Effects of light curing method and resin composite composition on composite adaptation to the cavity wall

Takako YOSHIKAWA1, Makoto MORIGAMI2, Alireza SADR3 and Junji TAGAMI1

1 Cariology and Operative Dentistry, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
2 Department of Dentistry, Toranomon Hospital, Minato-ku, Tokyo, Japan
3 International Exchange Center, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
Corresponding author, Takako YOSHIKAWA; E-mail: yoshikawa.ope@tmd.ac.jp

This study aimed to evaluate the effects of the light curing method and resin composite composition on marginal sealing and resin composite adaptation to the cavity wall. Cylindrical cavities were prepared on the buccal or lingual cervical regions. The teeth were restored using Clearfil Liner Bond 2V adhesive system and filled with Clearfil Photo Bright or Palfique Estelite resin composite. The resins were cured using the conventional or slow-start light curing method. After thermal cycling, the specimens were subjected to a dye penetration test. The slow-start curing method showed better resin composite adaptation to the cavity wall for both composites. Furthermore, the slow-start curing method resulted in significantly improved dentin marginal sealing compared with the conventional method for Clearfil Photo Bright. The light-cured resin composite, which exhibited increased contrast ratios during polymerization, seems to suggest high compensation for polymerization contraction stress when using the slow-start curing method.

Keywords: Resin composite, Marginal sealing, Cavity wall adaptation, Resin composite composition, Contrast ratio

INTRODUCTION

Adhesive dentistry is an important aspect of dental practice. Resin composite polymerization results in volumetric shrinkage, and this stress leads to greater gap formation between the resin and cavity surfaces1-6. Such marginal gaps and subsequent microleakage may cause marginal staining, postoperative sensitivity7,8, and secondary caries. In addition, cavity-wall gap formation may lead to pain on biting and failure of adhesion after repeated occlusal loading. The polymerization reaction of light-cured composites is rapid, which leads to the development of higher levels of stress in cured materials compared with that in self-cured materials9. Furthermore, the maximum interfacial stress generated at the cavity wall in light-cured composite restorations is twice as large as that observed in self-cured composite restorations10. Therefore, this stress leads to greater gap formation between the resin and cavity surfaces with light-cured resin composites than with self-cured resin composite5.

When the bond strength exceeds polymerization shrinkage stress, a crack is initiated in the tooth structure, usually the enamel11-13. We previously reported that the white margins represented cracks in the enamel surrounding the resin composite restorations; these cracks were located 30–50 μm from the composite–enamel interface, as observed using environmental scanning electron microscopy under a 100% saturated water vapor condition13.

There are several ways to overcome the curing stresses generated by light-cured, bulk-filled resin composites. One technique to decrease curing stresses is to use a flowable resin composite as the lining material14-16. The low shrinkage stress contributes to improved resin composite adaptation to the cavity wall17,18. However, the low mechanical property of flowable composite materials decreases the bond strength to the dentin wall19,20.

Incremental filling techniques are believed to decrease the curing stress at the tooth–resin interface that occurs when a cavity is bulk filled with light-cured resin composites. However, Versluis et al.21 conducted a theoretical study using the finite element analysis method and reported that compared with the bulk filling techniques, incremental filling techniques resulted in a higher frequency of polymerization shrinkage effects at the restoration–enamel interface. In addition, incremental filling does not increase the bond strength of the cavity floor of a box-like cavity22.

Alternatively, the internal hardness of cured resins increased with argon ion laser output along with increasing intensity, although the maximum hardness was not always increased23. The use of an intense light source may lead to a higher frequency of marginal and wall gap formation14,16,24,25. When a composite was cured with initial low-intensity light followed by high-intensity light, excellent marginal sealing and cavity adaptation were achieved14,16,24,25. Previous work has shown that when a composite was light cured with an initial light intensity of 270 mW/cm² for 10 s followed by a light intensity of 600 mW/cm² for 50 s after a 5-s interval, decreased the curing stress in the resin composite14-16. This method has been termed the slow-start curing method5,6. We already reported that the slow-start curing method improved resin composite marginal sealing and adaptation to the all dentin cavity wall for various adhesives14-16.
In contrast, the composition of a composite influences its capacity for refractive index mismatch between the matrix and filler, direct transmittance and contrast ratio. We previously reported that the light-cured resin composite, which had increased contrast ratios during polymerization, showed an accelerated curing rate at the bottom surface when using the slow-start curing method. The purpose of this study was to test the hypothesis that the light curing method (conventional or slow-start curing) and resin composite composition will affect marginal sealing at the dentin and adaptation to the cavity wall on enamel and dentin cavity.

MATERIALS AND METHODS

Specimen preparation
The materials, components, manufacturers, batch numbers, and bonding procedures used in this study are listed in Table 1. Extracted intact human molars were used in this study. The teeth were collected under protocol no. 725, which was and approved by the appropriate institutional review board. Cylindrical cavities with 2/3 enamel and 1/3 dentin margin, 2 mm depth and 3 mm-diameter, with a C-factor of 3.7, were prepared on the buccal or lingual cervical regions of each lower molar using a diamond point (# B12, GC Corp., Tokyo, Japan) under copious air-water irrigation (Fig. 1).

Each of the 24 cavities was treated with the adhesive Clearfil Liner Bond 2V (Table 1). After curing of the adhesive, the cavities were bulk filled with Clearfil Photo Bright resin composite or Palfique Estelite resin composite.

The resin composites were then polymerized using the conventional light curing method at 600 mW/cm² for 60 s or the slow-start curing method at 270 mW/cm² for 10 s + 5-s interval + 600 mW/cm² for 50 s. For light curing, an experimental quartz-tungsten halogen light curing unit (GC Corp, Tokyo, Japan) was employed, which was connected to a slide regulator and equipped with a control system for lamp voltage, and light intensity. Light intensity was measured using a Curing radiometer (model 100, Demetron Research, Danbury, CT, USA). After light curing, the specimens were stored in the dark for 24 h in water maintained at 37°C. Resin composite restorations were finished with wet 600-grit SiC paper. The specimens were thermocycled for 500 cycles between 5°C and 55°C with a 30-s dwell time.

Table 1 Study materials

<table>
<thead>
<tr>
<th>Material/Manufacturer</th>
<th>Components</th>
<th>Batch No.</th>
<th>Bonding Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearfil Liner Bond 2V (Kuraray Noritake Dental Inc., Tokyo, Japan)</td>
<td>Primer A: MDP, HEMA, dimethacrylates, photoinitiator, water, others</td>
<td>00002A</td>
<td>a, b, c, d, e, f</td>
</tr>
<tr>
<td></td>
<td>Primer B: HEMA, dimethacrylates, accelerator, water</td>
<td>00002A</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Bond A: MDP, HEMA, Bis-GMA, dimethacrylates, photoinitiator, microfiller, others</td>
<td>00003A</td>
<td>—</td>
</tr>
<tr>
<td>Clearfil Photo Bright (Kuraray Noritake Dental Inc., Tokyo, Japan) shading (US)</td>
<td>Silanated colloidal silica, prepolymerized organic filler containing colloidal silica, Bis-GMA, dimethacrylates, photoinitiator, others Filler load: 82 weight %</td>
<td>0036</td>
<td>—</td>
</tr>
<tr>
<td>Palfique Estelite (Tokuyama Dental Corp., Tokyo, Japan) shading (A3)</td>
<td>Silica-zirconia filler, Bis-GMA, TEGDMA, photo initiator Filler load: 82 weight %</td>
<td>15597</td>
<td>—</td>
</tr>
</tbody>
</table>

Abbreviations: MDP, 10 methacryloyloxydecyl dihydrogen phosphate; HEMA, 2-hydroxyethylmethacrylate; Bis-GMA, bisphenol A diglycidylmethylacrylate; TEGDMA, triethylene glycol dimethacrylate

Procedures: (a) mix equal volumes of primers A and B, (b) apply primer for 30 s, (c) dry with gentle air-blowing, (d) apply adhesive, (e) gently blow air, (f) light-cure for 20 s.
Evaluation of marginal sealing and cavity wall adaptation
To determine the degree of adaptation to the cavity margins and walls, a dye penetration test was performed by placing a 1.0 % acid red propylene glycol solution (Caries Detector, Kuraray Noritake Dental Inc., Tokyo, Japan) at the margins of the restorations for 5 s. The solution was then rinsed with water and gently blown dry. The degree of dye penetration was observed using a stereomicroscope at 20× magnification. A photographic record of each specimen was obtained at this stage. Subsequently, the specimens were longitudinally cut in half using a diamond saw microtome (Leitz 1600 saw microtome, Ernst Leitz, Wetzlar, Germany) under running water, and the dye was reapplied to the cavity walls examined to determine gaps and photographed. From the photographs, the length of dye penetration along the cavity margins and cavity walls was measured using a Digitizer (KD4300 model, Graphitec Co., Tokyo, Japan). The degree of dentin marginal leakage was determined as the length of dye penetration, which was expressed as a percentage of the total length of the dentin cavity margin. Dye penetration along the cavity walls was calculated as a percentage of the total length of the cavity wall. This area was referred to as the cavity-wall gap. Dye penetration scores were compared and analyzed using Mann-Whitney U and Kruskal-Wallis tests. Areas of marginal dye penetration in the enamel were considered to be enamel cracks.

RESULTS
The results for marginal leakage and cavity-wall gap formation are shown in Table 2. Light curing using the slow-start curing method showed complete dentin marginal sealing for both Clearfil Photo Bright and Palfique Estelite resin composites. This method also resulted in significantly better cavity wall adaptation compared with the conventional method for both resin composites (p<0.05). Furthermore, the slow-start curing method resulted in significantly better dentin marginal sealing compared with the conventional method for Clearfil Photo Bright (p<0.05). In contrast, the conventional method resulted in poor dentin marginal sealing and poor wall adaptation for both resin composites. Enamel crack formation was observed in all specimens using either of the two curing methods.

DISCUSSION
In the present study, the conventional light curing method resulted in poor marginal integrity and cavity wall adaptation, whereas the slow-start light curing method resulted in complete dentin marginal sealing for both Clearfil Photo Bright and Palfique Estelite resin composites. The slow-start method also showed significantly better cavity wall adaptation compared with the conventional method for both resin composites. Recent resin composite is designed to promote curing speed in order to save treatment time. However, increasing the velocity of light-cured resin decreases composite adaptation to the cavity wall when a different composition was used [9]. The polymerization rate has a significant effect on strain development. Therefore, we selected old type resin composite in this study.

A previous report indicated that a certain light intensity, which represents, the amount of activated starter radicals, was optimal for formation of cross-linked long-chain molecules [10]. A higher concentration of radicals leads to an earlier termination of the reaction with short-chain molecules. This suggests that curing with a high-intensity light is more likely to lead to marginal gaps and poor adaptation of resin composite to the cavity walls. On the other hand, the decreased rate of surface hardness [11] development due to the prolongation of the gel state and the accompanying absence of dye penetration suggests that this particular protocol may result in increased material flow, thereby providing stress relief despite the high elastic modulus and photosensitivity of the resin composite [12]. Previous studies have shown that when a composite was light cured using the slow-start curing method, a higher rate of hardening of the resin composite occurred at the cavity base than at the surface [3-6]. In addition, this method allowed most polymerization contraction to be completed during the initial flowable stage of resin composite polymerization. Moreover, this method decreased curing stresses by delaying the hardening of the resin composite and permitted more time for relief of the stress induced

<table>
<thead>
<tr>
<th>Light curing method</th>
<th>Clearfil Photo Bright</th>
<th>Palfique Estelite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dentin marginal leakage</td>
<td>Dentin cavity-wall gap formation</td>
</tr>
<tr>
<td>600 mW/cm² 60 s</td>
<td>38.3 (30.1)⁺</td>
<td>42.3 (9.4)</td>
</tr>
<tr>
<td>270 mW/cm² 10 s</td>
<td>0</td>
<td>12.8 (6.7)</td>
</tr>
<tr>
<td>+ 5-s interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 600 mW/cm² 50 s</td>
<td>0</td>
<td>12.8 (6.7)</td>
</tr>
</tbody>
</table>

⁺Intragroup data connected by a vertical line are significantly different (p<0.05).
⁺Intergroup data designated with same superscript letters for each resin composite are significantly different (p<0.05).
by polymerization contraction\(^3-6\). Furthermore, the rate
of curing of the resin directly adjacent to the cavity wall
may be enhanced by the free radicals present in the
bonding resin. The initial low light intensity may have
boosted the polymerization rate at this location than at
the surface of the resin. The process of polymerization
is then completed by high-intensity radiation, allowing
for a more uniform rate of cure throughout the bulk of
the resin composite. The radiation allows most of the
polymerization contraction to be completed during the
initial flowable stage of the resin composite, enabling
the resin to flow toward the cavity walls\(^6\).

The slow-start curing method resulted in a more
effective dentin marginal sealing compared with the
conventional method only for the Clearfil Photo Bright
composite. Light transmission through the light-cured resin composite is strongly affected by the opacity of the
resin composite, which changes before and after resin
composite curing. The opacity of the resin composite
is indicated by the refractive index mismatch between
the matrix and filler\(^29\) or contrast ratio\(^30,31\). Optimizing
filler/resin refractive index mismatch increases curing
depth\(^29\). The greater the transparency of the resin
composite shows the smaller the value of the ratio. A
completely opaque material has a contrast ratio of
1, while that for a translucent material is within the
range of 0–1\(^30\). Almost all resin composite materials
have a property of decreasing the contrast ratio (increasing transparency) during polymerization\(^31\).
The contrast ratio of Clearfil Photo Bright increases
during polymerization (increasing opacity), whereas
that of Palfique Estelite slightly decreases during
polymerization (slightly increasing transparency)\(^31\).
We previously reported that the light-cured resin
composite, which had increased contrast ratios during
polymerization, showed acceleration of curing at the
bottom surface when using the slow-start curing method\(^32\). Therefore, for Clearfil Photo Bright, the delay
in the hardening of the resin composite, particularly at
the top surface, may apparently decrease curing stresses and permit more time for relief of the stress induced by
polymerization contraction\(^32\). This allows most of the
polymerization contraction to be completed during the
initial flowable stage of polymerization, enabling the
resin to flow within itself and preventing it from pulling
away from the marginal cavity walls\(^3-6\).

The light curing method and resin composite composition affected marginal sealing at the dentin
and adaptation to the cavity wall. Therefore, tested
hypothesis were accepted.

Enamel crack formation was observed in all
specimens. Further research is required on the
prevention of enamel crack initiation and the
propagation for light-cured resin composite restorations. We will confirm the effect of self-cured adhesive and
light-cured adhesive on the enamel crack formation
using light-cured resin composite in future research.

CONCLUSION

The slow-start curing method showed better cavity wall
adaptation compared with the conventional method for
both Clearfil Photo Bright and Palfique Estelite resin
composites. Furthermore the slow-start curing method
improved dentin marginal sealing compared with the
conventional method for Clearfil Photo Bright. The
light-cured resin composite, which exhibited increased
contrast ratios during polymerization, seems to suggest
high compensation for polymerization contraction stress
when the slow-start curing method was used.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for
Scientific Research (No. 12307043) from the Ministry
of Education, Science, Sports, Culture, and Technology,
Japan; by a Grant-in-Aid (No. 22592115) from the
Japan Society for the Promotion; and by Global Center
of Excellence (GCOE) Program; and the International
Research Center for Molecular Science in Tooth and
Bone Diseases.

REFERENCES

1) Yoshikawa T, Takatsu T, Hosoda H. Study on marginal
integrity of the composite resin restorations: in relation
to curing environment and morphological nature of surrounding
2) Ciucchi B, Bouillaguet S, Delaloye M, Holz J. Volume of the
internal gap formation under composite restoration in vitro.
3) Yoshikawa T. The effect of curing method and environment
on the marginal sealing and wall adaptation of composite
4) Yoshikawa T, Burrow MF, Tagami J. A light curing method
for improving marginal sealing and cavity wall adaptation
5) Yoshikawa T, Burrow MF, Tagami J. The effects of bonding
system and light curing method on reducing stress of different
6) Yoshikawa T, Nakaoki Y, Takada T, Burrow MF, Tagami J.
The effects of light curing method and irradiation time
on marginal sealing and cavity wall adaptation of resin
composite restorations. Am J Dent 2003; 16 Special Issue:
63A-67A.
7) Eriksen HM, Leidal TI. Monkey pulpal response to composite
resin restorations in cavities treated with various cleansing
8) Opdam NJ, Feilzer AJ, Roeters JJ, Smale I. Class I occlusal
composite resin restorations: in vivo post-operative
sensitivity, wall adaptation, and microleakage. Am J Dent
1998; 11: 229-234.
9) Feilzer AJ, de Gee AJ, Davidson CL. Setting stress in
composite for two different curing modes. Dent Mater 1993;
9: 2-5.
10) Kinomoto Y, Torii M, Takeshige F, Ebisu S. Comparison of
polymerization contraction stresses between self- and light-
11) Jørgensen KD, Asmussen E, Shimokobe H. Enamel damages
caused by contracting restorative resins. Scand J Dent Res
1975; 83: 120-122.
12) Kanca J, Suh BI. Pulse activation: reducing resin-based
composite contraction stresses at the enamel cavosurface.