Stress relieving behaviour of flowable composite liners: A finite element analysis

Sarida ANATAVARA1, Kriskrai SITTHISERIPRATIP2 and Pisol SENAWONGSE1

1 Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Thailand
2 Biomedical Engineering Research Unit, National Metal and Materials Technology Center, Thailand

Corresponding author, Pisol SENAWONGSE; E-mail: pisol.sen@mahidol.ac.th

The purpose of this study was to investigate the consequences of using flowable composite as a liner beneath class I resin composite restorations on polymerization shrinkage stress and occlusal force. Models of class I resin composite restorations were generated. A control model received no flowable composite liner. Thirteen test models received different flowable composite liners with varying elastic modulus. Finite element analysis was used. The polymerization shrinkage of the resin composite and an occlusal force were simulated in the models. The stress and strain energy density in each model were investigated. The results demonstrated that all flowable composite linings were able to reduce polymerization shrinkage stress and occlusal force in enamel, dentin, the hybrid layer, and the adhesive layer to various degrees in tooth-restoration systems. Therefore, additional techniques may be applied to reduce the remaining stress and to ensure the long-term success of restorations.

Keywords: Elastic cavity wall, Flowable composite, Elastic modulus, Polymerization shrinkage, Strain energy density

INTRODUCTION

The increasing demand for esthetic dentistry has encouraged the use of resin composites for restoring anterior and posterior teeth. However, creating a successful resin composite restoration is still a complex task especially in posterior teeth. The main problems with direct posterior resin composite restorations are excessive wear, postoperative sensitivity, open contact area, and recurrent caries. As a result of polymerization, the bulk of resin composite shrinks approximately 2.0 to 5.6% by volume immediately after being light-cured. During the bonding and polymerization of resin composites, two forces act simultaneously on the tooth/restoration interface: the bonding force and the shrinkage force, respectively. The competition between these forces creates stress in the tooth/restoration interface and causes tooth deformation. The magnitude of the stress generated from polymerization is related to the configuration factor (C-factor), the viscoelastic properties of the resin composite, and the compliance of the bonded substrate.

In most restorations in posterior teeth, the C-factor is greater than 1. This is particularly so in class I and class V restorations where the C-factor is 5. When the resin composite bonds to such a cavity, volumetric shrinkage creates stress in both the material and the surrounding tooth structure. If compliance of the bonded substrate is insufficient, disruption of the bonded interface or fracture of the tooth structure may occur.

The method of lining the cavity wall with low elastic modulus materials, known as the elastic cavity wall concept, has recently been used to relieve shrinkage stress in clinical situations. The intermediary layer of the liner acts as a stress-absorbing layer, hence, reducing the stress transmitted to the tooth. Van Meerbeek and co-workers reported that the interdiffusion zone and adhesive resin were less rigid than the normal dentine. Furthermore, the combination of a low elastic modulus hybrid layer and a thick adhesive layer could create an artificial elastic cavity wall.

Since its first introduction in the market in 1996, flowable composites have become popular more for their special handling characteristics than for their clinical performance. To maintain the flow of the material, the composite needs a high percentage of diluent resin monomers, such as TEGDMA, and a low filler load. Hence, the flowable composite's elastic modulus is lower than the one from the regular restorative resin composite. Condon and Ferracane explained that reducing filler load results in more shrinkage, less stress and a lower tensile modulus. This characteristic is useful for creating the elastic cavity wall. Several authors have successfully demonstrated the use of a flowable composite as an intermediary layer. However, the results are inconsistent due to the variety of materials and the adhesive system used in the study.

The question remains concerning how low the elastic modulus should be for the flowable composite to become an excellent stress absorber. Finite element analysis (FEA) has recently been used to explain some of the dilemmas in dental materials regarding stress and strain. This analysis involves a program that analyses information of elastic moduli and Poisson’s ratios of different biomaterials and subsequently calculates the resulting stress and strain generated. The objective of this study was to use FEA to determine the suitable elastic modulus of flowable composites used as the intermediary layer.
MATERIALS AND METHODS

Creating a tooth-restoration model for analysis
Utilizing imaging software (Unigraphic NX 2.0, Electronic Data Systems Corporations, Texas, USA), we were able to create a 2-dimensional class I tooth-restoration model for the analysis. The model consisted of enamel, dentine and a resin composite restoration.

All the components were assembled into a magnified class I occlusal restoration as depicted in Fig. 1.

The dentin-enamel junction was assigned to be at 1.5 mm below the outer surface, according to the dental literature. The class I cavity was made in the form of a rounded rectangular shape. The cavity was created using the deepest part of the occlusal surface as the reference point, 2 mm deep and 2 mm wide (1 mm apart from the reference point). The class I resin composite restoration in dentin was surrounded by 3 layers of different materials: a layer of flowable composite (assigned thickness=500 μm), a layer of adhesive resin (assigned thickness=10 μm) and a hybrid layer (assigned thickness=5 μm). Therefore, there were only 2 layers of flowable composite and adhesive resin (without hybrid layer) in the enamel.

The thickness of the hybrid layer was based on the work of De Munck et al. and Pashley et al. The thickness of the flowable composite layer and the adhesive layer was based on the work of Unterbrink and Liebenberg. The order of layers is illustrated in Fig. 1.

Assigned material properties
The tooth model was then imported to the FEA software (ABAQUS 6.0). For calculation of the FEA, the Poisson’s ratio and the elastic modulus of all materials were entered (Table 1). All materials were assumed to be isotropic and linearly elastic.

Effect of polymerization shrinkage
Polymerization shrinkage of the resin composite was based on the distance of cuspal deflection, which was found to be 16 μm for Z250 in premolars. The simulation was performed by setting the temperature shrinkage value. We found that if the temperature was decreased 1 degree, the deflection would be 8 μm in average on all sides of the cavity. Therefore, we set the primary temperature at 25° and then decreased it to 24° to create the shrinkage force.

Effect of occlusal force
Immediately after polymerization shrinkage, the model was subjected to an occlusal load of 50 N. The load was applied at the reference point on the occlusal surface, parallel to the long axis (Fig. 1).

Data analysis
1. Percentage difference of Von Mises stress and total strain energy density
The Von Mises stress (MPa) and total strain energy density (MPa/1,000) from each structure were obtained from all models. The control model (without any flowable composite lining) showed the maximum Von Mises stress and maximum total strain energy density. The control model was compared to the test models to determine the effect of the flowable composite liner.
Table 1 Elastic modulus and Poisson’s ratio of enamel, dentin, hybrid layer, adhesive resin, flowable composites and composite resin

<table>
<thead>
<tr>
<th>Materials</th>
<th>Elastic modulus (MPa)</th>
<th>Poisson’s ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel</td>
<td>87,500</td>
<td>0.25</td>
<td>Habelitz et al., 2001</td>
</tr>
<tr>
<td>Dentine</td>
<td>25,111</td>
<td>0.30</td>
<td>Pongprueksa et al., 2008</td>
</tr>
<tr>
<td>Hybrid layer of adhesive resin:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single bond 2 (3M ESPE, St Paul, MN, USA)</td>
<td>11,765</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Adhesive resin: Single bond 2 (3M ESPE)</td>
<td>8,430</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Flowable composites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durafill Flow (Heraeus Kulzer, Wehrheim, Germany)</td>
<td>6,499</td>
<td>0.31</td>
<td>Labella et al., 1999</td>
</tr>
<tr>
<td>Aeliteflo LV (Bisco, Schaumburg, IL, USA)</td>
<td>6,861</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Glaze (Bisco)</td>
<td>7,384</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Aeliteflo (Bisco)</td>
<td>7,410</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Revolution (Kerr, Orange, CA, USA)</td>
<td>7,713</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Starflow (Danville Materials, San Ramon, CA, USA)</td>
<td>7,922</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Florestore (Dent-Mat, Santa Maria, CA, USA)</td>
<td>8,113</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Ultrasal XT plus (Ultradent Products, South Jordan, UT, USA)</td>
<td>8,642</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Versaflow (Centrix, Shelton, CT, USA)</td>
<td>10,737</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Snowwhite B (Coltene/Whaledent, Altstetten, Switzerland)</td>
<td>10,891</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Crystalessence (Conf-Dental Products, Louisville, CO, USA)</td>
<td>10,961</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Tetricflow (Vivadent, Schaan, Liechtenstein)</td>
<td>11,530</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Permaflo plus (Ultradent Products)</td>
<td>12,484</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Composite resin: Z250 (3M ESPE)</td>
<td>24,494</td>
<td>0.31</td>
<td>Pongprueksa et al., 2008</td>
</tr>
</tbody>
</table>

This result was important because polymerization shrinkage can be responsible for the immediate failure of resin composite restorations. On the other hand, strain impacted the durability of the restoration because it made the material more vulnerable to fatigue failure.

2. Linear equation
The maximum Von Mises stress in each structure was calculated with a linear equation. This equation allowed us to estimate the most suitable elastic modulus of flowable composites for relieving the stress caused by polymerization shrinkage and occlusal force.

RESULTS
Effect of polymerization shrinkage
The maximum stress found in a controlled model (62.75 MPa) was located in the enamel at the cavosurface margin without a flowable composite lining (Fig. 2A). A sample of stress pattern in a cavity model with Aeliteflo as the lining material is shown in Fig. 2B. The maximum stress (40.88 MPa) was located in the enamel at the cavosurface margin.

The maximum Von Mises stress values due to polymerization shrinkage and the percentage differences between test and control models for each substrate are demonstrated in Table 2. The maximum stress in all models was located in the enamel at the cavosurface margin.

For enamel, the maximum stress of the control model was 62.75 MPa. For the test models, the maximum stresses were reduced to 39.79–44.56 MPa in relation to the elastic modulus of the flowable composites. Flowable composite linings were able to reduce the maximum stress on enamel to varying degrees. The amount of stress reduction varied according to the elastic modulus of the liner. The results showed that the flowable composite lining could reduce stress on the enamel by 28.99 to 36.59%. The greatest stress reduction was found in the model with Durafill Flow lining.

For the dentine, polymerization shrinkage created stress that was most concentrated at the angle of the cavity. Maximum stress of 20.17 MPa was found in the control model. With the test models, the maximum stresses were reduced to 16.22–16.94 MPa with a range from 19.58 to 16.01% compared with the control.

The hybrid layer is the thinnest structure in the model (5 μm), which was affected by polymerization shrinkage. Stress reduction was found at hybrid layer in all models with the application of the flowable composite. The stress reducing capability of the flowable composite liners was related to the elastic modulus of the material. The lining was able to decrease the stress in the hybrid layer from 15.07 to 19.83%.

The adhesive layer also presented stress due to the polymerization shrinkage of resin composite. Stress was
found at a maximum of 38.57 MPa in the control model. Creating an elastic layer with flowable composites was found to decrease the maximum stress in all test models by 29.40 to 35.46%.

Maximum stress in the composite resin was also found at the cavosurface margin. The polymerization shrinkage of the resin composite created stress not only in the bonded substrates but also in the material itself.
Creating an elastic layer with a flowable composite decreased the maximum stress in all test models. It was found that the material’s internal stress was reduced by 12.70 to 16.27%.

The total elastic strain energy density (ESEDEN) was highest in the control model (0.1742 MPa/1,000). This value represented the amount of strain energy density in each component of the model. It was found that the strain energy was most concentrated in the adhesive layer near the cavosurface margin in all models. However, maximum strain energy in the model with an elastic layer, which ranged from 0.0752 to 0.0901 MPa/1,000, was less than that of the control model (with maximum ESEDEN of 0.1742 MPa/1,000) at the adhesive layer. A sample of ESEDEN in the cavity model with Aeliteflo as the lining material is shown in Figs. 3A and B. Lining the cavity with flowable composite decreased the strain found in all test models as shown in Table 3.

\[y = 1247.68x - 43560.23, \ r^2 = 0.987. \]

For enamel, all flowable composites were found to reduce the stress from polymerization shrinkage. Linear regression analysis revealed the linear equation \[y = 1247.68x - 43560.23, \ r^2 = 0.987. \] When the greatest maximum stress in the control model was considered in this equation, it was found that stress reduction in enamel could be expected when using a flowable composite with an elastic modulus below 34,731.69 MPa. Thus, the flowable composite lining was also found to reduce stress from occlusal force in enamel. Linear regression analysis revealed that the stress reduction could be expected when using flowable composites with elastic modulus below 32,645.27 MPa.

For dentine, all flowable composites were found to reduce polymerization shrinkage stress. Linear regression analysis revealed the linear equation \[y = 8194.14x - 127080.77, \ r^2 = 0.963. \] With this equation, the proper elastic modulus of flowable composites to reduce maximum stress in dentin was calculated. It was found that stress from polymerization shrinkage could be reduced in dentin when using a flowable composite lining with elastic modulus below 387,101.52 MPa. All flowable composite linings were found to reduce stress caused by the occlusal force. It was estimated through the linear regression analysis that stress reduction could be expected when using flowable composites with an elastic modulus below 672,238.74 MPa.

For the hybrid layer, all flowable composite linings were able to reduce stress from polymerization shrinkage in the hybrid layer. Linear regression analysis provided the linear equation \[y = 7813.11x - 95504.09, \ r^2 = 0.977. \] It was estimated that stress reduction in the hybrid layer could be expected when using flowable composites with an elastic modulus below 394,768.56 MPa. Occlusal force stress reduction in the hybrid layer was observed in all test models. The results could not be analyzed with linear regression methods.

For the adhesive layer, polymerization shrinkage stress reduction was observed in all models with a flowable composite lining. A linear equation was obtained. Calculation revealed that stress reduction could be expected when using flowable composites with elastic modulus below 44,560.02 MPa. Thus, all flowable composites were found to reduce occlusal force in the adhesive layer. Linear regression analysis revealed that stress reduction could be expected when using flowable composites with an elastic modulus below 57,279.33 MPa.

For the resin composite, lining with flowable
Table 3 Maximum ESEDEN and percentage of strain reduction with the effect of polymerization shrinkage and occlusal loading

<table>
<thead>
<tr>
<th>Materials</th>
<th>Polymerization shrinkage models</th>
<th>Occlusal loading models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strain</td>
<td>Percentage different</td>
</tr>
<tr>
<td>Control</td>
<td>0.1742</td>
<td>0.00</td>
</tr>
<tr>
<td>Durafile flow</td>
<td>0.0752</td>
<td>-56.83</td>
</tr>
<tr>
<td>Aeliteflo LV</td>
<td>0.0766</td>
<td>-56.03</td>
</tr>
<tr>
<td>Glaze</td>
<td>0.0784</td>
<td>-54.99</td>
</tr>
<tr>
<td>Aeliteflo</td>
<td>0.0785</td>
<td>-54.94</td>
</tr>
<tr>
<td>Revolution</td>
<td>0.0795</td>
<td>-54.36</td>
</tr>
<tr>
<td>Starflow</td>
<td>0.0801</td>
<td>-54.02</td>
</tr>
<tr>
<td>Florestore</td>
<td>0.0807</td>
<td>-53.67</td>
</tr>
<tr>
<td>Ultrasound XT plus</td>
<td>0.0822</td>
<td>-52.81</td>
</tr>
<tr>
<td>Versaflow</td>
<td>0.0871</td>
<td>-50.00</td>
</tr>
<tr>
<td>Snowwhite B</td>
<td>0.0874</td>
<td>-49.83</td>
</tr>
<tr>
<td>Crystalessence</td>
<td>0.0875</td>
<td>-49.77</td>
</tr>
<tr>
<td>Tetric flow</td>
<td>0.0885</td>
<td>-49.20</td>
</tr>
<tr>
<td>Permaflow</td>
<td>0.0901</td>
<td>-48.28</td>
</tr>
</tbody>
</table>

Fig. 3 ESEDEN pattern as affected by the polymerization shrinkage (A and B) and occlusal force (C and D) in the control model (A and C) and the model lined with flowable composite (B and D).
composites was also found to reduce polymerization shrinkage stress. It was estimated from the linear equation that stress reduction in this structure could be expected when using flowable composites below 116,243.35 MPa. In addition, a flowable composite lining was found to reduce the stress from occlusal force in resin composites. Linear regression analysis revealed that stress reduction could be expected when using flowable
Table 5 Linear relationship analysis of maximum stress and elastic modulus of flowable composite

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Enamel</th>
<th>Dentine</th>
<th>Hybrid layer</th>
<th>Adhesive layer</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of polymerization shrinkage</td>
<td>y=1247.68x−43560.23, r²=0.987</td>
<td>y=8194.14x−127080.77, r²=0.963</td>
<td>y=7813.11x−95504.09, r²=0.977</td>
<td>y=1800.02x−57391.24, r²=0.986</td>
<td>y=4020.35x−136033.61, r²=0.964</td>
</tr>
<tr>
<td>Effect of occlusal force</td>
<td>y=1132.11x−59293.38, r²=0.986</td>
<td>y=10995.57x−220711.50, r²=0.963</td>
<td>y=1661.63x−77661.64, r²=0.985</td>
<td>y=6207.76x−358200.00, r²=0.973</td>
<td></td>
</tr>
</tbody>
</table>

y: elastic modulus of flowable composite; x: maximum stress occurred on substrate, r²: goodness-of-fit of linear regression

DISCUSSIONS

The FEA has several advantages over photoelastic analysis when performing stress studies. Although these 2 methods are able to show stress result patterns in a tooth-restoration system, FEA can also provide a numerical result within each structure without any additional measuring technique. Each model created in this study represented a magnified class I restoration. Class I was chosen because it is the cavity with the highest C-factor on the occlusal surface. All models are simulations of a tooth-restoration system consisted of enamel, dentin, a hybrid layer, an adhesive layer, and resin composite. The test models also received a flowable composite liner. Polymerization shrinkage was simulated by means of temperature shrinkage. This method simulated volumetric shrinkage of resin composite towards the center of the material, which was similar to the polymerization of chemical-cured resin composites. For light-cured resin composites, the center of volumetric shrinkage was theorized to be adjacent to the location of the applied curing light. Therefore, different stress result patterns could be expected.

All components in the models were assumed to be isotropic, linearly elastic and perfectly bounded together. Hence, the results for maximum Von Mises stress could not be interpreted by way of interfacial stress but only by stress gathered in these components. As a result, adhesive failure or de-bonding of each component was neglected in this study. The polymerization shrinkage stress stored in each component was a crucial factor because it determined the pre-loaded condition and the integrity of the tooth-restoration system. Additionally, the results of this study provide information regarding the effect of the polymerization shrinkage stress generated in both individual and combined components.

In this study, the control model received a resin composite restoration without any methods of stress relief (liner). The results revealed that stress was highest at the enamel margin. Enamel is the structure whose elastic modulus is highest within the tooth-restoration system. Therefore, enamel did not yield to the applied force and resulted in increased stress. This finding was in agreement with the study of Haak and co-workers, who stated that marginal enamel fractures were frequently found after polymerization shrinkage. Flowable composite lining was the method of stress relief chosen for this study. A flowable composite liner in this study represented a pre-cured layer surrounding the bulk of the resin composite. This layer gave additional thickness to the pre-existing adhesive layer and enhanced compliance to the system. It was concluded that all flowable composite liners were able to decrease stress in the enamel.

Flowable composite liners have unique flowability due to a 20–25% reduction of the filler content compared to the conventional hybrid composite. This characteristic results in inferior mechanical properties and, therefore, limited usage. Flowable composites have not been recommended for restorations in high stress-bearing areas. Nevertheless, the composites’ low mechanical properties have been demonstrated to be useful for lining the base of resin composite restorations and counteracting the effects of polymerization shrinkage by conventional hybrid composites (described as the elastic cavity wall concept). Several types of flowable composites with different compositions are available...
today, leading to differences in mechanical properties, especially in terms of elastic modulus. The present study investigated the application of thirteen different flowable composites (Table 1) used as liners in 2-dimensional class I cavity models. The elastic modulus of these flowable composites ranges from 6,499 to 12,484 MPa[27]. This wide difference is due to the filler volume fraction in each material[28-31]. Filler particles were added to improve the resin composite’s mechanical properties and handling characteristics. A decreased filler volume fraction resulted in reduced flexural strength, hardness, fracture toughness and viscosity[30-32]. In this study, creating an elastic cavity wall with flowable composite liners could be achieved regardless of the type of flowable composite used. Nevertheless, stress reduction was mostly observed when Durafill Flow was used as an elastic layer (liner). According to Labella and co-workers, the elastic modulus of Durafill Flow was the lowest amongst flowable composites used in their study[27]. Durafill Flow was composed of 40% filler in volume, which was also found to be the smallest filler volume fraction amongst all tested flowable composites[39].

The hybrid layer was found to have a lower elastic modulus than that of the normal dentin and be beneficial in terms of stress relieve[12]. Our results show that some polymerization shrinkage stress was increased within this thin layer, being initially concentrated on the angle of the cavity and then transferred to the surrounding dentin. Shrinkage stress reduction could not be relied on the hybrid layer alone because this structure was very thin. In the present study, lining with flowable composites was able to reduce shrinkage stress in the hybrid layer, regardless of the elastic modulus of the material. This could be explained by the increase in thickness of the elastic layer due to the flowable composite liner.

Stress from the occlusal force was concentrated in the structure that had direct contact with the resin composite. From there, the stress was transferred to the surrounding structure, and substrates at the cavosurface were found to be the most affected. By creating a more compliant cavity wall, stress in these structures was lessened. This revealed that the elastic wall could counteract the stress from both the polymerization shrinkage and occlusal force. This result supported a previous study that found the increasing flexibility of the cavity wall could reduce microleakage due to an occlusal force[32]. This finding could be applied to a clinical situation where flowable composite liners with the proper elastic modulus could be used to sustain the integrity of the enamel and the adhesive layer, keeping these structures intact longer than in a situation without a liner. The linear relationship analysis showed that a flowable composite liner with a lower elastic modulus led to a more effective stress reduction in any of the substrates. Because the flowable composites presented in this study had an elastic modulus lower than expected values, all of them of them could reduce the stress, to different extents, from a shrinkage force of Z250 and an occlusal force of 50 N. However, based on the linear equation, there were no flowable materials that could compensate for all the stress in the tooth-restoration system, which would have required a flowable material with a negative elastic modulus. As there is no such material, stress is expected to remain in the system and potentially affect the clinical outcome of composite restorations. Additional techniques such as the soft-start or pulse-delay curing method[33,34] and the use of low shrinkage composites[35,36] might be recommended to compensate for the remaining stress.

CONCLUSIONS

The substrates (enamel and adhesive layer) at the cavosurface were ones the most affected by shrinkage stress. Thus, the strain energy due to shrinkage stress was most concentrated in the adhesive layer at the cavosurface margin. This property might have made the material more vulnerable to fatigue failure. The stress and strain energy should be reduced by lining the class I cavity with flowable composite. The linear equation acquired from the analysis of results revealed that the proper elastic modulus of flowable composites to be used for the elastic wall should be less than 34,672.5 MPa. Flowable composites with this elastic property should reduce polymerization shrinkage stress in all structures of tooth restoration systems.

The occlusal force had a great impact on the contracted area of the substrate. The stress transferred prominently to the substrates (enamel and adhesive layer) at the cavosurface. The use of a flowable composite as liner clearly reduced the maximum stress at the cavosurface. Analysis of the results obtained after application of the occlusal force revealed that the proper elastic modulus of flowable composites used for the elastic wall should be less than 14,500 MPa to buffer the stress created by the occlusal force.

REFERENCES