Effect of Light Intensity on Polymerization of Light-cured Composite Resins

Rie NOMOTO, Keiko UCHIDA and Tadashi HIRASAWA
Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230, Japan

Received July 28, 1994/Accepted October 19, 1994

The depths of cure and the distributions of degree of conversion (DC), polymerization conversion (PC) and percent pendant double bonds (PDB) of light-cured composite resins cured under various intensities of light were investigated. When the total amount of exposure, represented by the product of the light intensity and the irradiation time, was kept constant, each of the depth of cure and the distributions of DC, PC and PDB were the same for each material regardless of the light intensity and irradiation time. The depth of cure could be expressed as a logarithmic function of the total amount of exposure. From regression analysis, the attenuation coefficient and the critical total amount of exposure capable of initiating polymerization of each composite resin could be determined.

Key words: Light-cured composite resin, Light intensity, Depth of cure

INTRODUCTION

The intensity of most light sources reduces with time during radiation. There are many variables that can influence the intensity of light during exposure and affect the properties of the set restorative material. Light-cured materials have a limited depth of cure since light of a certain intensity is required to activated polymerization. The purpose of this study was to investigate the influence of light intensity on polymerization of composite resins. The depth of cure and the distributions of degree of conversion (DC), polymerization conversion (PC) and percent pendant double bonds (PDB) were measured. PC is the proportion of double bonds at which monomer molecules are converted into polymers.

MATERIALS AND METHODS

Visible light-cured composites

The three dental composite resins used were abbreviated as Z100*, SP** and CL#. These were commercially available visible light-cured composites based on BisGMA-TEGDMA. The light source## used for this research was equipped with a light tip 12 mm in diameter. This unit was chosen because of the little reduction of light intensity with time, as shown in Fig. 1.

* Z100, 3M Co., Minn., USA
** Silux Plus, 3M, Co., Minn., USA
Clearfil Photo Posterior, Kuraray Co., Ltd., Okayama, Japan
New light VL II, GC Co., Tokyo, Japan
Light intensity measurement
The light intensity was measured with a lux meter*. A light-tight black cap with an aperture 4.0 mm in diameter at its center was placed on the measuring surface of the lux meter. This aperture size was the same as the cavity diameter of the stainless steel mold used for preparation of specimens. The light tip and the lux meter were set so that the detector head of lux meter was parallel to and under the center of the light tip. When the exit window of the light tip made contact with the black cap of the detector head, the value of light intensity through the 4.0-mm aperture was standard, abbreviated as I. The light intensity at the surface of the lux meter could be reduced to one-half, one-quarter or one-eighth of the standard value by varying the distance between the tip of the activating device and the lux meter. The distance was measured with a slide caliper. This pre-measured distance was applied when the composite resin was polymerized.

As shown in Fig. 1, the light intensity of this light unit was approximately constant after 30s from the beginning of radiation. Even though it was switched off and instantly on repeatedly, the intensity immediately matched that at the time the unit was switched off. Consequently, for each test section, exposure light was taken as the incident light intensity after 30s from the time that the lamp was switched on. The irradiation periods were then applied after 30 s exposure.

Depth of cure measurement
A stainless steel split mold with a cylindrical cavity 4 mm in diameter and 8 mm in depth was used. The cavity was slightly overfilled with the composite. The material was covered with polyester strips** (51 μm in thickness) and was subsequently evened with a glass plate, which was then removed. The tip distance to the surface of the strips was that pre-
measured for the various intensities of light, and the center of the tip was fitted to the center of the resin. Thereafter, the material was exposed to visible light at various intensities for either 10, 20, 40 or 80 seconds. Samples were stored at 23°C in the dark. After 180 s from completion of exposure, the specimen was removed from the mold and the uncured material was gently removed with a plastic spatula. The height of the cylinder of cured material was measured with a micrometer. Five replications were made for each test condition.

Evaluation of degree of conversion, polymerization conversion and percent pendant double bonds

A method similar to that used to prepare the specimens has been described previously. The composites were cured as described above and stored at 37°C in the dark for 23h without being removed from the molds. Subsequently, a thin composite film about 0.2 mm in thickness was sectioned perpendicular to the irradiated surface with a cutting machine under a water stream and polished in water. The thickness of specimen finally reached about 0.15 mm. Three specimens were prepared for each condition.

After 24h from the end of the irradiation period, infrared (IR) spectra of microareas (100 × 100 μm²) were measured at 0.2-mm intervals along the midline from the irradiated surface to the bottom of the specimen using a Fourier transformed infrared spectrometer equipped with a microscopic unit and an automatic mapping stage. IR spectra were measured in order to evaluate the quantities of carbon–carbon double bonds remaining in the specimens.

Specimens were immersed in methanol to extract residual monomers. After elutable components were completely extracted, the specimen was freed of solvent. Then IR measurement were repeated at the same location.

In these IR spectra, two absorbance peaks appeared in the range from 1600–1650 cm⁻¹. The peak at 1637 cm⁻¹ was assigned to C=C stretching vibrations of methacryloyl groups and that at 1608 cm⁻¹ to stretching vibrations of aromatic rings. An appropriate baseline was drawn, and these two absorption peaks were separated into two Lorentzian curves. The intensities of absorption were determined by the areas under the peaks.

DC, PC and PDB were calculated using the following equations:

\[
\text{DC} (%) = 100 - \left(\frac{bc}{ad} \right) \\
\text{PC} (%) = 100 - \left(\frac{c-e}{c} \right) \times \left(\frac{bc}{ad} \right) \\
\text{PDB} (%) = \left(\frac{e}{c} \right) \times \left(\frac{bc}{ad} \right) \\
\]

Where the intensities a–e are defined as follows:

- a: C=C absorbance peak at 1637 cm⁻¹ of resin pastes;
- b: aromatic absorbance peak at 1608 cm⁻¹ of resin pastes;
- c: C=C absorbance peak at 1637 cm⁻¹ of cured resin before extraction;
- d: aromatic absorbance peak at 1608 cm⁻¹ of cured resin before extraction; and,
- e: C=C absorbance peak at 1637 cm⁻¹ of cured resin after extraction.

8 JIR-100, Japanese Electron Optics Laboratory Co., Ltd., Tokyo, Japan
RESULTS

Light intensity

Fig. 2 shows the relationship between the tip distance to the lux meter and the light intensity. For the light intensity at the detector head of the lux meter, the inverse-square law held.

Depth of cure

The depths of cure for the investigated resins irradiated with the various light intensities and irradiation times are shown in Tables 1-3. Table 1 is for Z100, Table 2 is for SP and Table

![Graph showing relationship between tip distance to lux meter and light intensity](image)

Fig. 2 Relationship between the tip distance to the lux meter and the light intensity.

Table 1 Variation of the depth of cure for Z100

<table>
<thead>
<tr>
<th>Irradiation time (s)</th>
<th>Depth of cure (mm)</th>
<th>Intensity of light</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>I/2</td>
</tr>
<tr>
<td>10</td>
<td>4.10(^a) (0.10)</td>
<td>3.16(^b) (0.10)</td>
</tr>
<tr>
<td>20</td>
<td>5.07(^d) (0.06)</td>
<td>4.08(^a) (0.06)</td>
</tr>
<tr>
<td>40</td>
<td>6.08(^e) (0.00)</td>
<td>5.04(^d) (0.08)</td>
</tr>
<tr>
<td>80</td>
<td>6.90 (0.02)</td>
<td>6.00(^e) (0.04)</td>
</tr>
</tbody>
</table>

Numbers in parentheses: standard deviation
I: standardized intensity of light
a, b, c, d, e: the same amount of irradiation, respectively

Table 2 Variation of the depth of cure for SP

<table>
<thead>
<tr>
<th>Irradiation time (s)</th>
<th>Depth of cure (mm)</th>
<th>Intensity of light</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>I/2</td>
</tr>
<tr>
<td>10</td>
<td>2.93(^a) (0.06)</td>
<td>2.35(^b) (0.01)</td>
</tr>
<tr>
<td>20</td>
<td>3.47(^d) (0.03)</td>
<td>2.89(^a) (0.06)</td>
</tr>
<tr>
<td>40</td>
<td>4.06(^e) (0.04)</td>
<td>3.38(^d) (0.07)</td>
</tr>
<tr>
<td>80</td>
<td>4.59 (0.08)</td>
<td>3.94(^e) (0.06)</td>
</tr>
</tbody>
</table>

Numbers in parentheses: standard deviation
I: standardized intensity of light
a, b, c, d, e: the same amount of irradiation, respectively
3 is for CL. Letters adjunct to the results indicate the same total amount of exposure. The total amount of exposure is represented by the product of the light intensity and the irradiation time. Each depth of cure was the same for each material regardless of the light intensity and irradiation time when the total amount of exposure was kept constant.

DC, PC and PDB

Fig. 3 shows the DC as a function of distance from the exposed surface for each irradiation condition. Fig. 4 shows the PC and Fig. 5 shows the PDB. The total amount of exposure was constant at $10 \times I$. The distributions of DC, PC and PDB coincided with those obtained for different conditions of irradiation regardless of the light intensity and irradiation time when the total amount of exposure was kept constant.

DISCUSSION

When the total amount of exposure was kept constant, the cured composites had not only the

<table>
<thead>
<tr>
<th>Irradiation time (s)</th>
<th>I</th>
<th>I/2</th>
<th>I/4</th>
<th>I/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.29<sup>a</sup> (0.03)</td>
<td>3.54<sup>b</sup> (0.02)</td>
<td>2.76<sup>c</sup> (0.01)</td>
<td>2.10 (0.01)</td>
</tr>
<tr>
<td>20</td>
<td>5.27<sup>d</sup> (0.01)</td>
<td>4.30<sup>a</sup> (0.02)</td>
<td>3.43<sup>b</sup> (0.05)</td>
<td>2.76<sup>c</sup> (0.03)</td>
</tr>
<tr>
<td>40</td>
<td>6.17<sup>e</sup> (0.05)</td>
<td>5.22<sup>d</sup> (0.02)</td>
<td>4.20<sup>a</sup> (0.03)</td>
<td>3.37<sup>b</sup> (0.06)</td>
</tr>
<tr>
<td>80</td>
<td>7.01 (0.11)</td>
<td>6.18<sup>e</sup> (0.03)</td>
<td>5.00<sup>d</sup> (0.08)</td>
<td>4.07<sup>a</sup> (0.01)</td>
</tr>
</tbody>
</table>

numbers in parentheses: standard deviation
I: standardized intensity of light
a, b, c, d, e: the same amount of irradiation, respectively

![Graphs showing variation in degree of conversion](Z100, SP, CL)
Fig. 4 Variation of the polymerization conversion with depth.
irradiated for ○: I × 10 s; △: (I/2) × 20 s;
▽: (I/4) × 40 s; □: (I/8) × 80 s
I: standardized intensity of light

Fig. 5 Variation of the percent pendant double bonds with depth.
irradiated for ○: I × 10 s; △: (I/2) × 20 s;
▽: (I/4) × 40 s; □: (I/8) × 80 s
I: standardized intensity of light

same depths of cure, but the same distributions of DC, PC and PDB. This finding is in accordance with those reported previously by Cook5,7. Cook derived the following relationship for the depth of cure (L) on the basis of analysis of the kinetics involved in the photopolymerization of dimethacrylate resins and on the assumption that the Lambert’s law holds and polymerization does not occur until all of the inhibitor has been consumed by the radicals
generated in the immediate vicinity.

\[L = \frac{1}{\epsilon} \log I_0 + \frac{1}{\epsilon} \log \left(\frac{2.303K\phi\epsilon_sS_0}{\chi_0} \right) \]

(1)

Where \(t \) is the irradiation time, \(I_0 \) is the intensity of the incident light at the surface of the material, \(\epsilon \) is the attenuation coefficient of the composite resin, \(\phi \) is the quantum yield, \(\epsilon_s \) is the molar absorptivity, \(S_0 \) and \(\chi_0 \) are the concentration of the photoinitiator and inhibitor, respectively, and \(K \) is a constant. Since \(\phi, \epsilon_s, \chi_0 \) and \(S_0 \) are inherent in the composite resin, Equation (1) can be simplified to the following form:

\[L = \frac{\log(A \cdot I_0 \cdot t)}{\epsilon} \]

(2)

Where \(A = \frac{2.303K\phi\epsilon_sS_0}{\chi_0} \), i.e., is a constant. By virtue of Equation (2), it follows that \(L \) depends on \(I_0 \cdot t \), that is, the total amount of exposure. Equation (2) thereby shows that the depth of cure is dependent on the product of light intensity and irradiation time.

Assuming that the change of the attenuation coefficient during polymerization and the difference of the attenuation coefficient which was due to the differences of the cross-linked polymers in a cured composite were negligibly small, the intensity of light transmitted by the cured composite is defined by the Equation (3):

\[I = I_0 \cdot 10^{-\epsilon L} \]

(3)

by the applying Lambert's law. For this law, \(\epsilon \) is an absorption coefficient but is referred to as an attenuation coefficient because the heterogeneity in dental composite resin influences the optical properties. Light is not only absorbed by matrix resin and fillers but also scattered at the interfaces between the filler and resin phases. When the sample is irradiated for time-\(t \), the amount of light transmitted is defined by the Equation (4):

\[E = I \cdot t = I_0 \cdot t \cdot 10^{-\epsilon L} \]

(4)

\(E \) is defined as the critical total amount of exposure and represents a minimum total amount of exposure required to activate polymerization. Equation (4) can be transformed:

\[L = \frac{\log(I_0 \cdot t) - \log E}{\epsilon} \]

(5)

Equation (5) indicates that a linear relationship exists between the depth of cure and the logarithm of total amount of exposure. The attenuation coefficient and the critical total amount of exposure are defined by this equation.

Table 4 lists the results of regression analysis for each material. The attenuation coefficient of SP was larger than those of other materials, indicating that SP attenuates light to a greater extent than Z100 and CL. When the critical total amount of exposure was reached for each sample, the surfaces of Z100 and CL were slightly cured but crumbled during
measurement of depth of cure, and SP was not cured, validating the above inference.

CONCLUSION

The depths of cure and the distributions of degree of conversion (DC), polymerization conversion (PC) and percent pendant double bonds (PDB) of light-cured composite resins cured at various light intensities were measured. The influence of light intensity and irradiation time on polymerization of composite resins were investigated. Different intensities of light were obtained by varying the distance between the exit window of the light activation unit and the surface of the specimen.

When the total amount of exposure, represented by the product of the intensity of light and the irradiation time, was kept constant, the depths of cure and the distributions of DC, PC and PDB were the same for each material regardless of the light intensity and irradiation time. The depth of cure could be expressed as the logarithmic function of the total amount of exposure, and the attenuation coefficient and the critical total amount of exposure, which could initiate polymerization of each composite resin on the light activation unit used, could be determined from the regression equation.

ACKNOWLEDGMENT

This study was supported in part by a Grant-in Aid for Encouragement of Young Scientists, 1993, from the Ministry of Education, Science and Culture, Japan (A) 05771748.

The data in this article were presented in part at the 23th General Meeting of the Japanese Society for Dental Materials and Devices, April 2-3, 1994, Mastudo.

REFERENCES

HEMA ブライマーへの各種鋼塩の添加効果を検討した。ウェット浸歯表面を10%リン酸水溶液で処理した後、鋼塩を含む35% HEMA 水溶液ブライマーを塗布し、MMA-TBB レジンでアクリル棒を接着した。鋼塩の種類・濃度を変えて接着したところ、ブライマー中の鋼塩の最適濃度は0.5-3.0μmol/g であった。検討した8種類の鋼塩の中で、硫酸、メタクリル酸、メタクリロイルオキシエチルフタル酸、メタクリロイルオキシエチルコハク酸の鋼塩が特に有効であり、14.2-16.1MPa の平均接着強さおよび最低の接着強さの平均値として 9.9-11.7MPa が得られた。これらの接着強さは、市販の 4-MET/ MMA-TBB レジン接着システムで得られる値よりも大きかった。ある種の鋼塩存在下で重合したポリ MMA の分子量が増加したことから、いくつかの鋼塩では MMA-TBB レジンに対するその分子量増加効果によって接着強さが向上したことが示唆された。

光重合コンポジットレジンの重合性に及ぼす光強度の影響

野本理恵、内田信子、平澤 忠

鶴見大学歯学部歯科理工学教室

照射距離を変化させて得られた種々の光強度で光重合コンポジットレジンを重合し、硬化深さを初期硬化体内の反応率、重合率およびペンタジントリ重結合体の深さ方向に対する分布を測定し、これら重合特性に及ぼす光強度の影響を調べた。照射する照射量（強度と照射時間の積）を一定にすると光強度、照射時間に関わらず硬化深さはほぼ一定の値を示し、硬化体内部の反応率、重合率およびペンタジントリ重結合体の各分布もよく一致した。硬化深さは照射量の対数で表され、この直線回帰式から使用した光照射器に対する材料の吸光係数および材料が硬化するのに必要な照射量（透界照射量）を求めることができた。

チタン鍛造におけるガスパージの効果

田島浩司、松田清次郎1、北島聡幸1

横山有紀、柿川 宏、小園秀夫

九州獨科大学歯科理工学講座

1友和産業㈱技術開発部

溶解雰囲気と鍛型内のガス清浄化を目的としたダブルガスバージを特徴として開発されたチタン専用鍛造槽を用い、ダブルバージの効果について検討することを目的に、溶解雰囲気中ならびに純チタン鍛造体中の酸素濃度分析、鍛造体の硬さ試験および鍛造性試験を行った。ダブルバージを採用することで溶解雰囲気の極低酸素化が可能となり、純チタン鍛造体中の酸素量は他機種に比べて著しく低くなった。さらにチタン鍛造体表面の硬さもバージを採用することで減少した。しかし、鍛造性に対する影響はみられなかった。以上の結果から、ダブルバージを採用して開発されたチタン鍛造槽により酸素の混入を抑えたチタン鍛造体を作製できることが示唆された。