Disinfection of Removable Dentures Using Ozone

Hiroshi MURAKAMI, Shigemitsu SAKUMA, Kentarou NAKAMURA, Yutaka ITO, Masami HATTORI1, Akihiro ASAI2, Toshihide NOGUCHI3, Yoichiro KAMEYAMA3, Yoshihiro KIMURA4, Toru NAGAO5, Tatsushi KAWAI5 and Jiro HASEGAWA5

Department of Fixed Prosthodontics, 1Department of 2nd of Prosthodontics, 2Department Periodontology, 3Department of Oral Pathology, 4Department of 2nd Oral and Maxillofacial Surgery, 5Department of Dental Material Science, School of Dentistry, Aichi-Gakuin University

2-11, Suemori-dori, Chikusa-ku, Nagoya 464, Japan

Received July 31, 1996/Accepted October 26, 1996

Over time, removable dentures tend to become unsanitary and emit unpleasant odors, and oral mucosa sometimes becomes inflamed or denture stomatitis is caused by denture plaque. Recently, various cleaning products designed to keep removable dentures sanitary have appeared on the market. It is known that denture plaque is mainly composed of Candida albicans (C. albicans), and that ozone seems to inhibit these micro-organisms. Accordingly, a denture cleaner using ozone bubbles (ozone concentration of about 10ppm) was considered as clinically appropriate because of its strong disinfecting and deodorizing power, and high biological safeness. The effectiveness of this cleaner against C. albicans was investigated using. Results showed that C. albicans decreased to about 1/10 after 30 min and to 1/10³ after 60 min.

Key words: Ozone, Denture cleaner, Candida albicans

INTRODUCTION

The use of dentures without proper hygienic care will in the long term cause denture stomatitis or the unpleasant odors. Mouthpieces and splints will also emit a characteristic odor. Smudges, staining and pigmentation of prostheses are produced not only by food remnants but also by micro-organisms in the oral cavity. Denture plaque accumulating on the mucosal surface of the denture largely consists of such eumycetes as C. albicans, as demonstrated by many researchers.1–5) The necessity of removing plaque from dentures is also important.6,7) A denture cleaner utilizing the effects of ozone was manufactured because ozone has high biological safeness, and strong disinfecting and deodorizing power.8) In addition, it rapidly decomposes, leaving no toxic residue.

The present paper evaluates the denture cleaner together with presentation of the results the disinfectant effectiveness of ozone against C. albicans.

MATERIALS AND METHODS

Outline of denture cleaner using ozone

The denture cleaner mainly consists of a power source, air pump, ozonizer and water tank to hold the dentures.(Fig. 1) Our previous report8) described in detail the apparatus. Ozone
concentration is about 10ppm in the ozonizer. The measurement of ozone concentration was performed by an ozone-concentration measurement device* at room temperature of 25°C and humidity of 60%. An experiment to determine the disinfectant effectiveness of this apparatus was performed using *C.albicans* (IFO1594).

Experiment condition

Two trial ozonizers (DC-1, DC-2) which generate ozone and one DC-0 which generates only air were used. The changes in the numbers of *C. albicans* in a concentration of 10ppm after 30 min and 60 min and in air alone (DC-0) after 60 min were examined.

Methods

1. Adjustment of culture medium
 The composition of the culture medium is shown in Table 1. The medium was adjusted in a triangular flask, and ion-exchanged water (1 ℓ) was added, shaken and adjusted to pH 6.2～6.3. High-pressure sterilization was employed. After sterilization, the medium was cooled to 50°C and allowed to set for use as a plate medium.

2. Culture of *C. albicans*
 C. albicans was painted on a plate medium by means of a platinum loop and cultured at 25°C for 72 hours.

3. Preparation of cell-suspension
 The propagated *C. albicans* on the plate medium was collected by platinum loop, and suspended in sterile water (10ml) with a turbidity of about 0.4 at 420nm using a spectrophotometer. This suspension (2~3ml) was added to sterile water (2 ℓ) and mixed thorough-

* OZM-G21-2W, Okitronics Co. Ltd., Tokyo, Japan
Table 1 Composition of culture medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pepton</td>
<td>5</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>3</td>
</tr>
<tr>
<td>Malt extract</td>
<td>3</td>
</tr>
<tr>
<td>Glucose</td>
<td>10</td>
</tr>
<tr>
<td>Agar</td>
<td>15</td>
</tr>
</tbody>
</table>

ly. This was to serve as the test sample solution.

4. Protocol
(1) Test sample solution was poured into the tank of the test apparatus (DC-0, 1, 2).
(2) Test sample solution was stirred thoroughly, and 0.1ml of the solution was removed, and the test apparatus put into motion.
(3) 0.1ml was added to 0.9ml of sterile physiological salt solution to make 10-fold dilutions of the sample solution.
(4) 0.1ml of this diluted solution was added to a 0.9ml sterile physiological salt solution diluted 10-fold for making a solution diluted 100-fold.
(5) 0.1ml of 10-fold and 100-fold dilutions of the test sample solution were placed on the plate media and cultured at 25°C for 72 hours.
(6) After the apparatus was set in motion for the appointed test period, the numbers of bacteria were measured following the procedure outlined in sections (3)～(5) culturing C. albicans in 10-fold and 100-fold dilutions. In addition, 0.1ml of the test sample was also placed on a plate media and cultured.
(7) After culturing, the number of supplied bacillus colonies on each plate was counted, and the number of C. albicans in 1ml of solution was calculated adopting the number of the dilute ratio in the range of 30～300.

RESULTS
The findings of the present study on the disinfectant effectiveness of an ozone concentration of 10ppm against C. albicans are as follows (Table 2, Fig. 2):

In DC-1, the initial number of C. albicans at 4.85×10³ CFU/ml had decreased after 30 min to 1.31×10³ CFU/ml and after 60 min to 1.8×10³ CFU/ml. In DC-2, the initial number of C. albicans was 4.10×10³ CFU/ml; after 30 min the number had decreased to 8.45×10² CFU/ml and after 60 min to 1.5×10³ CFU/ml. These figures were similar to those of DC-1. In air only, the initial number of C. albicans was 4.35×10³ CFU/ml; after 60 min, the number had decreased to 3.80×10³ CFU/ml, a decrease limited only to about 13% of the earlier reading.
DISCUSSION

Disinfectant effect against *C. albicans*

A denture cleaner utilizing ozone which possesses powerful disinfectant and deodorizing effectiveness has been manufactured. Research was conducted on its effectiveness against *C. albicans* and as a result it was found that *C. albicans* decreased to about 1/10 after 30 min and to 1/10³ after 60 min. Naito⁹) reported on the notable differences of resistance in some 300 different species of fungi and bacteria after ozone treatment in the disinfection of foodstuffs. He pointed out that ozone showed its most intensive disinfectant power against *Lactic acid bacterium*, followed by yeast fungi, yeast fungi spores, *Penicillium* spores, *Aspergillus* spores and *Bacillus* spores. Among these fungi, ozone showed the highest effectiveness against the *Candida* genus. Some reports¹⁰⁻¹²) have indicated that ozone in fluid has proved effective as a disinfectant against *C. paracreus, C. tropicallis, C. kurusei, C. tropecallis* and *C. utilis* from the *Candida* genus, but there are no reports concerning its effect on *C. albicans*, the main constituent bacterium of denture plaque. In our experimental denture cleaner (ozone concentration about 10ppm), the number of *C. albicans* decreased to 1/10 after 30 min., and to 1/10³ after 60 min, but eliminating the bacterium entirely seems to be impossible. The problem is related to an assessing procedure to which level, disinfection should be maintained. Previous reports have mainly focused on ozone’s practical usage rather than establishing the basic mechanism of ozone disinfection. However, studies of the biological effect of ozone on
the cell wall or the cell membrane and various enzymes needs to be continued in the future.

Ozone utilization

Since ozone is an unstable gas molecule, its production involves intense oxidation and emission of oxygen. The oxidizing power of ozone ranks second to that of fluorine. The chemical behavior of ozone has led to its being employed for deodorization, decolorization, disinfection, and decomposition of organic matter. The disinfectant effectiveness of ozone against viruses and bacilli was recognized a long time ago and investigations were carried out in waterworks, sewage, air, food, and in the medical field. The merits of ozone are that (1) it can be generated from air or water by means of electricity, (2) it is easy to control the amount generated, (3) there is no secondary environmental pollution because ozone readily decomposes, (4) there is only a very slight possibility of the generation of toxic substances. There are disadvantages however, in that ozone is (1) unstorable, (2) allows no osmosis by disinfection, (3) Quickly dissipates and (4) is difficult to handle because of its strong reaction. Denture cleaning products are required to be cost effective, leave no toxic substance after decomposing as well as having high biological safeness, and to possess extensive antibacterial and deodorant effects. Especially the biological safeness of denture cleaners are important, although mishaps with denture cleansers have not yet been reported in Japan. However, in the U. S. A, about 150 cases of misuse or accidental drinking of cleansers are reported\(^1\)\(^2\) by NCPC (National Clearinghouse for Poison Control Center) annually. Taking every factor mentioned above into consideration, ozone’s remarkable disinfectant and deodorant power, its short half-life in water, its swift decomposition and the ease of disposing of any effluent make it suitable for cleaning dentures.

CONCLUSION

A denture cleaner utilizing ozone which possesses powerful disinfectant and deodorizing effectiveness has been manufactured. Research was conducted on its effectiveness against *C. albicans* and as a result it was found that *C. albicans* decreased to about 1/10 after 30 min and to 1/10\(^3\) after 60 min. Consequently, with further improvements to this denture cleaner, it should be possible to utilize ozone for the cleaning and disinfecting of removable prostheses.

ACKNOWLEDGMENTS

We would like to express our gratitude to Sankei-Giken Inc., Anou Kojou, Mr. Tomoyuki Okada, our adviser, and to all others for their help in the development of this apparatus and in the subsequent experiments.

REFERENCES

オゾンを利用した可撤性義歯の殺菌

村上 弘，佐久間重光，中村健太郎，伊藤 裕，服部正巳
浅井博昭，野口俊英，前田新彦，亀山洋一郎，木村嘉宏

長尾 徹，河合達志，長谷川二郎

愛知学院大学歯学部歯科補綴学第三講座
1愛知学院大学歯学部歯科補綴学第二講座
2愛知学院大学歯学部歯科保存学第三講座
3愛知学院大学歯学部口腔病理学講座
4愛知学院大学歯学部口腔外科第二講座
5愛知学院大学歯学部歯科理工学講座

口腔内には多くの細菌が棲息しているため，可撤性義歯を衛生管理が十分に行われていない状態で，長期間使用しているとデンチャープラックが義歯表面に付着し，義歯性口内炎を起こしたり，義歯特有の臭いを発生するようになる。そのため，可撤性義歯を可及的清潔に保つことが重要である。

そこで，われわれは殺菌力，脱臭力に優れたオゾンに着目し，これを義歯の殺菌，洗浄に使用するため，オゾンを使用した義歯洗浄器を試作した。今回はこの試作洗浄器を使用し，デンチャープラックの主体である Candida albicans に対する殺菌力を調べた結果，約 10 ppm のオゾン濃度では，30分後に約 1/10，60分後に 1/10³ 程度に減少することが判明し，可撤性義歯の洗浄に使用可能と思われた。

ヒトおよび動物皮膚に対するデンティンプライマーとしての
2種ダイオール水溶液の安全性の評価

栗原 彩，真鍋厚史，勝野和之，伊藤和雄
久光 久，和久本貞雄，吉田武美

昭和大学歯学部歯科保存学第 2 講座
1昭和大学薬学部毒物学教室

この研究の目的は，当教室で開発されたデンティンプライマーすなわち 62.5%ethylene glycol，45%1，6-hexanediol 水溶液の皮膚安全性を一次皮膚刺激試験，累積皮膚刺激試験，Guinea Pig Maximization test およびヒトパッチテストによって検討，観察することである。その結果，一次皮膚刺激試験，累積皮膚刺激試験とヒトパッチテストでは両水溶液ともに刺激性は認められなかった。しかしながら，Guinea Pig Maximization test による 2-HEMA に感作された動物に対し，100%hexanediol で弱い誘発反応が認められた。以上の結果より，2-HEMA の様なメタクリル酸プライマーと比較して ethylene glycol や 45%1，6-hexanediol 水溶液は比較的安全で臨床的にも十分使用可能なプライマーであると思われる。