Impact Strength of Acrylic Denture Base Resin Reinforced with Woven Glass Fiber

Takahito KANIE, Hiroyuki ARIKAWA, Koichi FUJII and Seiji BAN
Department of Biomaterials Science
Kagoshima University Dental School
8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan

Received September 26, 2002/Accepted December 25, 2002

This study investigated the effect of the number and position of woven glass fibers in denture base resin matrix on its impact strength. Test specimens were reinforced with woven glass fiber 0.5, 1.0, or 1.5 mm below the surface. The impact strength was tested using an Izod-type impact tester with an impact speed of 335 cm/s, which simulates dropping the denture, and using a flywheel-type impact tester with a two-point support at 13.5 and 75.0 cm/s, which simulates the chewing. The woven glass fibers had a strengthening effect in all tests, and the impact resistance was further improved when the woven glass fibers were positioned more superficially in the resin. The results suggest that woven glass fiber is an effective reinforcement in denture base resin.

Key words: Denture base resin, Woven glass fiber, Impact strength

INTRODUCTION

Acrylic denture base resin sometimes cracks in the median line during chewing or when dentures are accidentally dropped. Such breakage often originates from an impulsive force. Therefore, studies have examined ways to improve the impact strength of resins. The matrix resin can be strengthened by chemical modification through the addition of a poly-functional monomer or another monomer\(^1-5\) or by using fiber reinforcement\(^6-13\). Study\(^4\) has shown that the addition of dimethacrylate monomers to the substrate improves the impact resistance of denture base resin by 50-70\%, while another study\(^5\) of poly-functional monomers did not find any improvement in impact resistance.

In contrast, polyethylene fiber reinforcement was reported to improve the impact resistance by 360\%\(^13\), and carbon fiber reinforcement increased the impact strength greater than 10-fold that of PMMA\(^7\). Currently, metal wires are generally used as reinforcements. However, metal wire is often difficult to work, and can produce an inferior result esthetically. The mechanical properties of the other effective fibers, such as carbon, nylon, and polyethylene, have been discussed; however, the effectiveness of the fiber reinforcement depends on many variables, e.g. type, position and direction of fibers.

Recently, studies\(^14,15\) have examined glass fiber reinforcement. Dental resin
readily adheres to glass fiber and the esthetic results are excellent. The glass is light compared with metal. One previous study16 suggested that the flexural strength of denture base resin is improved when it is reinforced with woven glass fiber. However, few studies17-19 have examined the impact strength of denture base resin reinforced with glass fiber, since glass, which is a brittle material, is generally thought to be too weak to survive impact. This study investigated the effect of the number and position of woven glass fibers in the matrix resin on the impact strength under two different impact testers.

MATERIALS AND METHODS

Manufacture of test specimens

The woven glass fiber (YEA2306, Mie Fabrics, Mie, Japan) used in this study consisted of E-glass and was 0.23 mm in standard thickness (Fig. 1). The woven glass fiber was cleaned in boiling water for 1 hr, dried in air, cut into 40×100-mm sheets, and then soaked in 2%-\(\gamma\)-MPTS (Shinetsu Chemicals, Tokyo, Japan)-ethanol solution for 10 min to silanize it. Then, it was dried in air for 3 hr, and heated at 115\(\degree\)C for 10 min. Then, 1 or 2 sheets of the silanized woven glass fiber were sandwiched between two Teflon boards and sealed with aluminum foil. BPO was added to the liquid denture base resin monomer (Pour Resin, Shofu Inc., Kyoto, Japan) at 1 wt% and injected into the space containing the woven glass fiber and allowed to polymerize into a thin plate with an average thickness of 0.31 or 0.56 mm (one or two layers of woven glass fiber; Codes: S and D) by heating at 50\(\degree\)C for 30 min. Then, the thin plate was put in a concave Teflon mold and a mixture in a powder/liquid ratio of 9 g/5 ml was poured into the Teflon mold. This was heated at 50\(\degree\)C for 30 min. After polymerization, the composite block was cut with a diamond blade, and polished to 3.2±0.1 mm thickness, 3.6±0.1 mm width, and 70 mm length. The details of this process were described in a previously16. The reinforcing glass fibers were positioned

![Fig. 1 Woven glass fiber used in this investigation.](image)
0.5, 1.0, or 1.5 mm below the surface of the test specimens (Codes: -05, -10 and -15).

Impact test

A flywheel type impact-testing machine (Thrive Seiko, Kagoshima, Japan) with two-point support and an Izod impact tester (Shimadzu, Kyoto, Japan) were used to obtain two impact conditions. The flywheel type impact-testing machine was used for measurements at impact speeds of 13.5 and 75.0 cm/s; the former corresponds to the speed during chewing, and the latter is the maximum speed of this tester (Fig. 2). The span length was 50 mm and the force-deflection curve obtained in the impact test was recorded with a pen-recorder. The absorbed energy \((E_a) \) of the test specimen was calculated using the equation\(^{20} \):

\[
E_a = \int_0^D f \, dx
\]

where \(D \) is the deflection at the maximum load point. In the equation, \(\int f \, dx \) corresponds to the solid area under the curve in Fig. 3. The area was calculated using computer software (WinRoof, Mitani, Fukui, Japan) after scanning the curve into a computer.

The impact speed of the Izod impact tester, with a pressure of 20 kg/cm\(^2\), was 335 cm/s, and was based on the theoretical speed of a dropped denture (Fig. 4). The energy absorbed was calculated using the following equation\(^{21} \) using the swing rise angle \(\beta \) to the opposite side.

\[
E = W \cdot R \cdot (\cos \beta - \cos \alpha) - (\cos \alpha' - \cos \alpha) (\alpha + \beta)/(\alpha + \alpha')
\]

where, \(W \) (kg) is the weight of the hammer, \(R \) (cm) is the distance from the center of the rotating shaft to the center of gravity of the hammer, \(\alpha \) is the lifting angle
of the hammer, and \(\alpha' \) is the swing rise angle of a hammer swung without weight from the lifting angle (\(\alpha \)). In all the tests, the test specimen was installed so that the glass fibers were under tension.

Woven glass fiber content

Test specimens were dried in an oven at 37°C for 24 hr, and weighed with an analytical balance. Then, the test specimen was soaked in tetrahydrofuran (THF) to dissolve the polymer. The remaining woven glass fiber was removed from the THF, dried, and then fired in a porcelain crucible at 600°C for 1 hr. The woven glass fiber was reweighed after it had cooled. The woven glass fiber content as a percentage by volume (\(V_g \)) (vol%) was calculated using the following formula\(^{21} \):

\[
V_g = \frac{(W_g/r_g)}{(W_g/r_g) + (W_r/r_r)}
\]

where \(W_g \) is the relative weight of the woven glass fiber, \(r_g \) is the density of the woven glass fiber (2.56 g/cm\(^3\)), \(W_r \) is the relative weight of the polymer matrix, and \(r_r \) is the density of the polymer matrix (1.19 g/cm\(^3\)).

Statistical analysis

Six specimens were used for each impact test. For controls, test specimens containing no woven glass fiber were made using the same method. A one-way analysis of variance (ANOVA) and Tukey’s test were used to compare the differences in impact strength at \(\alpha = 0.05 \).

RESULTS

None of the test specimens reinforced with single (S-05 and S-10) or double (D-05 and D-10) layers of woven glass fiber 0.5 or 1.0 mm below the surface fractured at an impact speed of 13.5 cm/s (Fig. 5). In test specimens reinforced with single (S-15) or double (D-15) layers of woven glass fiber 1.5 mm from the surface, the absorbed
energy for breakage was 1.38 and 1.76 J, respectively. The absorbed energy of the unreinforced resin (PMMA) was 0.147 J, and was significantly different from S-15 and D-15 ($p<0.05$).

When the impact speed was 75.0 cm/s, the absorbed energy of S-05, S-10, and S-15 was 0.84, 0.75, and 0.68 J, respectively (Fig. 6). There was a significant difference between S-05 and S-15 ($p<0.05$). The absorbed energy of D-10 and D-15 was 2.02 and 0.93 J, while D-05 did not break at the maximum torque of this machine (27.8 N·m).
The absorbed energy of PMMA was 0.07 J and differed significantly from all the measured values ($p<0.05$).

At an impact speed of 335 cm/s, the absorbed energy of S-05, S-10, and S-15 was 0.74, 0.62, and 0.61 J, respectively, and that of D-05, D-10, and D-15 was 1.34, 1.14, and 0.82 J, respectively (Fig. 7). There was a significant difference between S-05 and S-15 ($p<0.05$). The absorbed energy of PMMA was 0.12 J and was significantly different from all the measured values ($p<0.05$).

The relative content of woven glass fiber when single and double layers were used was 3.8 and 7.8 vol%, respectively.

DISCUSSION

A previous study22 clearly showed that the tensile strength of glass fiber must be increased to improve the impact strength of acrylic resin reinforced with glass fiber. Therefore, we used a new woven glass fiber, which is 5-fold stronger per unit width (25 mm) than the glass fiber used in the previous study. The increased strength of this woven glass fiber did not result from the strength of the glass itself, but from the increased quantity and diameter of its constituent filaments as a result of changing the weave of the fiber. Nevertheless, it was easily cut with scissors and there were no problems with its workability or bonding to the resin.

This study used two different testers. The first simulated breakage as a result of dropping the denture. The falling velocity ($V=362.6$ cm/s) was calculated using the equation $V=(2gh)^{1/2}$, where $g=9.81$ m/s2, h was the assumed height of a table (70 cm), and air resistance was ignored. This speed closely matches the velocity (335 cm/s)
cm/s) of the hammer of the Izod impact tester. In general, when a denture falls, conditions are unlikely to match the stresses in a two-point support test. Therefore, the Izod-type test was adopted in this study. The maximum absorbed energy with the Izod-type impact tester was about 11-fold (D-05) greater than that of PMMA. This is the first time the Izod impact strength of denture base resin reinforced with glass fiber has been determined; using carbon fiber, Shimozato et al. reported that the impact strength increased 200%. Uzum reported that the Charpy impact strength of resin reinforced with glass fiber was about 11-fold that of non-reinforced resin, and Vallittu et al. reported an approximately 10-fold improvement in the impact strength when glass fibers were incorporated both near the surface and at the center of a resin specimen. These results agree with the present findings that the reinforcing effect of glass fiber measured using various impact tests is large.

We also carried out impact tests using a two-point support method, which models the stress causing breakage while chewing. Although the speed of chewing (13.5 cm/s) is 1/25 that of falling, it is 4,000 times more rapid than that imposed in the general three-point bending test (1-2 mm/min). However, no studies have measured the impact strength of denture base resin reinforced with glass fiber at this speed. At 13.5 cm/s, which corresponds to the speed during chewing, the S-15 and D-15 specimens broke, and the average impact strength was about 10-fold greater than that of PMMA. Similarly, using the two-point support measurement, at an impact speed of 75 cm/s, D-10 was about 29-fold stronger than PMMA, which was the greatest increase in strength measured.

When using a composite with a sandwich structure, a through examination is necessary, because the glass fiber content has a significant effect on the mechanical properties. Smith reported that glass fiber is deleterious at contents of 20 vol% or less, because the fibers act as weakening discontinuities. Vallittu reported that a glass fiber content exceeding 14.8 vol% has beneficial effects on tensile strength. Other studies on its mechanical properties reported similar results. Woven glass fiber can be interwoven in the longitudinal and transverse directions. Deboer et al. measured the transverse strength when carbon fibers were incorporated parallel or perpendicular to an applied force, or in both directions, and found little benefit of parallel fibers on strength, although they did help to maintain shape. In contrast, Vallittu et al. used glass fibers in all directions, and found that glass fibers perpendicular to the line of rupture prevented rupture, while the glass fiber content directly affected the strength of the reinforced resin. We also found that the impact strength measured by three test speeds increased with increasing fiber content, and the increase was greater when the woven glass fiber was placed near the surface. In examining the relationship between fiber content and impact strength, both Berrong et al. and Taner et al. (using polyethylene fiber) and Gutteridge et al. (using Kevlar) reported that the impact strength increased with the fiber content. The fiber contents in our study were 3.8 and 7.8 vol%, and are within the range of reported values. The present results demonstrate that relatively low glass fiber content sufficiently improves the impact strength in comparison with other mechanical properties.
In S-05 and D-05, the woven glass fiber was near the surface of test specimens, and these specimens were stronger than specimens S-15 and D-15, in which the woven glass fiber was placed in the center of the test specimens. This suggests that the position has an important effect on impact strength. The image of a fracture in Fig. 8 (S-10) shows that the crack in the matrix resin stops at the woven glass fiber, which clearly inhibits extension of the crack. Although glass is a brittle material, it clearly increases the impact resistance of dental resin. As described previously\(^2\), this is accomplished by increasing the tensile strength of the reinforcing materials compared with the matrix resin at the point where a tensile force is applied. In specimens S-15 and D-15, the woven glass fiber was near the center of the specimen. Although this position does not necessarily increase strength in popular mechanical tests, such as the three-point bending strength, the woven glass fiber had a reinforcing effect in all impact conditions tested and the effect was greater when the fiber was in a more external position. In general, it is said to be difficult to incorporate a thin layer of glass fiber into a resin at a specific position; however, the present results suggest that even if the fiber is slightly misplaced, the impact resistance improves sufficiently.

REFERENCES

38 IMPACT STRENGTH OF RESIN WITH GLASS FIBER

