Regular Article

Comparison of Human Cytochrome P450 Inhibition by the Thienopyridines Prasugrel, Clopidogrel, and Ticlopidine

Katsunobu Hagihara¹,*, Yumi Nishiya¹, Atsushi Kurihara¹, Miho Kazui¹, Nagy A. Farid² and Toshihiko Ikeda³

¹Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
²Department of Drug Disposition, Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana, U.S.A.
³Yokohama College of Pharmacy, Yokohama, Japan

Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk

Summary: Differences in the inhibition of cytochrome P450 activities among thienopyridine antiplatelet agents, ticlopidine, clopidogrel, prasugrel, and the metabolites, 2-oxo-clopidogrel, clopidogrel acid metabolite, deacetylated metabolite of prasugrel (R-95913) and the pharmacologically active metabolites of clopidogrel and prasugrel, were examined using recombinant cytochromes P450 and fluorescent probe substrates. Ticlopidine and clopidogrel inhibited CYP2B6 with IC₅₀ values of 0.0517 ± 0.0323 µM and 0.0182 ± 0.0069 µM, respectively, and inhibited CYP2C19 with IC₅₀ values of 0.203 ± 0.124 µM and 0.524 ± 0.160 µM, respectively. Ticlopidine also inhibited CYP2D6 (IC₅₀ of 0.354 ± 0.158 µM). In contrast, 2-oxo-clopidogrel, prasugrel and R-95913 were much weaker inhibitors of CYP2B6, CYP2C19 and CYP2D6. The inhibitory effects of all the compounds tested were much weaker on the isoforms other than those indicated above. The active metabolites of clopidogrel and prasugrel and clopidogrel acid metabolite also did not affect the activities of the P450s examined.

Keywords: prasugrel; antiplatelet; thienopyridine; cytochrome P450; active metabolite

Introduction

The thienopyridines, ticlopidine and clopidogrel, have become standard drugs for the management of patients following percutaneous coronary intervention and stent placement.¹,² Thienopyridines are prodrugs that are converted in vivo to pharmacologically active metabolites that inhibit platelet function after irreversibly binding to the platelet ADP P2Y₁₂ receptor.³,⁴ Treatment with ticlopidine is associated with a slightly higher risk of adverse effects such as hepatotoxicity, neutropenia and thrombotic thrombocytopenic purpura than clopidogrel.⁵ In the global market, clopidogrel is being used predominantly due to its relatively faster onset of action and a lower incidence of adverse effects compared with ticlopidine.⁵

In animal models, prasugrel, a new thienopyridine P2Y₁₂ receptor antagonist, showed more potent antiplatelet activity with more rapid onset than clopidogrel and ticlopidine.³,⁶ Recently, Jernberg et al. reported that prasugrel achieved greater inhibition of platelet aggregation than clopidogrel in aspirin-treated patients with stable coronary artery disease.⁷ Prasugrel's antiplatelet effect in vivo is greater than that of ticlopidine and clopidogrel which emanates from the more efficient generation of its active metabolite compared to the other thienopyridines.⁸

Pharmacologically active metabolites of thienopyridines have been shown to be produced through cytochromes P450 (CYP)-mediated oxidation of their thiolactone derivatives as shown in Figure 1.¹¹⁻¹³ Clopidogrel is oxidized by CYP1A2, CYP2B6 and CYP2C19 to form 2-oxo-clopidogrel, and production of 2-oxo-ticlopidine is also catalyzed by CYPs.⁹,¹²,¹⁴ On the other hand, production of the deacetylated metabolite of prasugrel (R-95913) is catalyzed by esterases.⁸,¹⁰ The esterase-mediated hydrolysis step is very rapid both in vitro and in vivo, such that prasugrel is not detected in human plasma even at early time points after oral administration.¹⁰,¹⁵ Thus, for the three thienopyridines, five meta-
Fig. 1. Biotransformation of thienopyridine-type P2Y₁₂ receptor antagonists, ticlopidine, clopidogrel and prasugrel, to pharmacologically active metabolites
CYP: cytochrome P450

Biotransformation processes in Figure 1 are catalyzed by cytochrome P450.

Being a substrate for a cytochrome P450 indicates that the substrate may also be a competitive inhibitor of cytochrome P450 isoforms. In fact, potent inhibition of the activities of cytochrome P450 has been shown in vitro: CYP2B6, CYP2C19 and CYP2D6 by ticlopidine¹⁴; CYP2C19 by 2-oxo-ticlopidine¹⁷; CYP2B6 and CYP2C19 by clopidogrel²². On the other hand, R-95913 did not inhibit CYP1A2, and inhibited CYP2C9, CYP2C19, CYP2D6, and CYP3A with Ki values ranging from 7.2 μM to 82 μM. These Ki values significantly exceed maximum circulating concentrations of R-95913 of 265 nM, obtained after a 10 mg prasugrel therapeutic dose, by 27- to 309-fold¹³. Thus R-95913 would not affect the metabolic clearance of drugs metabolized by these cytochromes. R-95913 was found to be a weak inhibitor of CYP2B6 in vitro²⁸. The active metabolite of prasugrel did not inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, or CYP3A in vitro¹³. Clinically, ticlopidine is known to inhibit the CYP2C19-mediated metabolism of phenytoin²³ and omeprazole^{24,25}. It has also been reported that both clopidogrel and ticlopidine significantly inhibit CYP2B6-catalyzed bupropion hydroxylation in the clinical setting, reducing the mean exposure to hydroxybupropion by 52% and 84%, respectively²⁰. In humans, prasugrel was found to be a weak inhibitor of CYP2B6²⁹.

To estimate the potential of clinical drug-drug interactions with prasugrel, it is of importance to compare the inhibitory effects of R-95913, to which prasugrel is rapidly hydrolyzed in vivo, with those of other thienopyridine drugs and their metabolites, on the activities of cytochromes P450. In this study, the differences in the inhibitory effects of thienopyridines and of clopidogrel acid metabolite, 2-oxo-clopidogrel and R-95913 on the activities of various cytochromes P450 using fluorometric microtiter plate assays were examined. We also examined whether the pharmacologically active metabolites of clopidogrel and prasugrel are inhibitors of CYP activities. We determined the IC₅₀ values without preincubation in the presence of both NADPH and the thienopyridines, and therefore, this paper is focused on direct inhibition by the thienopyridines.

Materials and Methods

Materials: Clopidogrel, clopidogrel acid metabolite, 2-oxo-clopidogrel, prasugrel, thiolactone metabolite of prasugrel (R-95913), the pharmacologically active
metabolites of clopidogrel and prasugrel and R-135766 for the internal standard were synthesized at Ube Industries, Ltd. (Ube, Japan). Ticlopidine was purchased from Sigma Chemical Co. (St. Louis, MO, USA). The structures of these compounds are shown in Figure 1. Assay kits for the inhibition of cytochrome P450 including fluorescent probe substrates and typical chemical inhibitors: CYP1A2, 3-cyano-7-ethoxycoumarin and furafylline; CYP2A6, coumarin and tranilcyprromine; CYP2B6, 7-ethoxy-4-trifluoromethylcoumarin and tranilcypromine; CYP2C8, dibenzylfluorescein and quercetin; CYP2C9, 7-methoxy-4-trifluoromethylcoumarin and sulphaphenazole; CYP2C19, 3-cyano-7-ethoxycoumarin and tranilcypromine; CYP2D6, 3-[2-(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin and quinidine; CYP2E1, 7-methoxy-4-trifluoromethylcoumarin and diethyldithiocarbamic acid; CYP3A4, 7-benzoxylxyquinoline and ketoconazole were purchased from Gentest Corporation (Woburn, MA, USA). All other reagents and solvents were commercially available and of the purest grade.

Microtiter plate assays for inhibition of human cytochrome P450: Studies on the inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 were carried out in duplicate three times using the assay kits for inhibition of cytochrome P450.27 Each experiment was conducted following the manufacturer's assay protocol. The final concentrations of the test compounds (ticlopidine, clopidogrel, prasugrel, clopidogrel acid metabolite, 2-oxo-clopidogrel, R-95913, clopidogrel active metabolite and R-138727) were set at 0.00, 0.0229, 0.0686, 0.206, 0.617, 1.85, 5.56, 16.7 and 50.0 μM except for the combination of cytochromes P450 and inhibitors described below. For the inhibition of CYP2B6 by ticlopidine and clopidogrel, the final concentrations of these three test compounds were 0.00, 0.000229, 0.000686, 0.00206, 0.00617, 0.0185, 0.0556, 0.167 and 0.500 μM. For the inhibition of CYP2C19 by ticlopidine and clopidogrel, the final concentrations of these three test compounds were 0.00, 0.00229, 0.000686, 0.0206, 0.0617, 0.185, 0.556, 1.67 and 5.00 μM. The typical chemical inhibitors of cytochrome P450 isoforms indicated in the Material Section were used as positive controls. All the test compounds and typical chemical inhibitors were dissolved in acetonitrile. After preincubation of the mixture containing 16.25 μM NADP, 825 μM MgCl₂, 825 μM glucose 6-phosphate, 0.4 units/mL glucose 6-phosphate dehydrogenase (final concentrations) and the test compounds for 10 min at 37°C, an enzyme reaction was started by adding the cytochrome P450 and its fluorescent probe substrate. After incubation for 15 min (CYP1A2), 25 min (CYP2A6), 30 min (CYP2B6, CYP2C19, CYP2D6 and CYP3A4), 40 min (CYP2C8 and CYP2E1) or 45 min (CYP2C9), the reaction was terminated by adding 0.5 M Tris Base and acetonitrile or 2 N sodium hydroxide. Fluorescence of the reaction products was measured by means of a fluorescent plate scanner, Bioulumin 960 (Molecular Dynamics Inc., Sunnyvale, CA, USA) controlled with the computer software Xperiment Bioulumin 960 (Molecular Dynamics Inc.) and SPECTRA MAX GEMINI EM (Molecular Devices Corp.) controlled using SOFT max PRO (ver. 4.3, Molecular Devices Corp.). The excitation/emission filters used for the assays were 405/450 nm (CYP1A2), 390/450 nm (CYP2A6), 405/535 nm (CYP2B6), 485/535 nm (CYP2C8), 405/535 nm (CYP2C9), 405/450 nm (CYP2C19), 390/450 nm (CYP2D6), 405/535 nm (CYP2E1) and 405/535 nm (CYP3A4). For clopidogrel active metabolite and R-138727, they were above or as follows: 410/460 nm (CYP1A2), 390/460 nm (CYP2A6), 409/530 nm (CYP2B6), 485/538 nm (CYP2C8), 409/530 nm (CYP2C9), 410/460 nm (CYP2C19), 390/460 nm (CYP2D6), 410/538 nm (CYP2E1) and 409/530 nm (CYP3A4).

Stability of clopidogrel active metabolite and R-138727 in the assay system: Clopidogrel active metabolite and R-138727 were dissolved in acetonitrile. After preincubation of the mixture containing 16.25 μM NADP, 825 μM MgCl₂, 825 μM glucose 6-phosphate, 0.4 units/mL glucose 6-phosphate dehydrogenase and 5 μM test compounds (final concentrations) for 10 min at 37°C, an enzyme reaction was started by adding human liver microsomes (final concentration: 1 mg/mL). After incubation for 0, 15, 30 and 45 min, the reaction was terminated by adding acetonitrile, and the active metabolites were derivatized with 1 μmol of methoxyphenacyl bromide. The assays were performed following the methods previously reported.13,34 R-135766 was used as the internal standard. Separation of the analytes by HPLC was conducted using an Alliance2690 Separations Module (Waters Co., Milford, MA). Mass spectra were determined using a Quattro LC MS/MS system (Micromass Ltd., Milford, MA) in the positive ion detection mode using an ESI-interface. The lower limit of quantification was set at 1.6 nM for clopidogrel active metabolite or 8 nM for R-138727. Data acquisition and analysis were performed using MassLynx software (Version 4.0, Micromass Ltd.).

Data analysis: The fluorescence value in each well after subtracting that of the blank well was regarded as the net activity of each cytochrome P450. To the blank well, stop solution was added prior to the initiation of the reaction. The v/v₀ value, which is the ratio of the activity in the well containing the inhibitor (the activity of the sample well: v) to that in the control well without any of the inhibitor (the activity of control well: v₀), was calculated and rounded off to three significant figures using Microsoft Office Excel 2003 (Microsoft Corporation, Redmond, WA, USA). Some of strongly inhibited samples
showed smaller fluorescence values than those of the blank, and thus they are expressed as zero. For each cytochrome P450, each of the three inhibition curves was prepared in duplicate, and the IC_{50} value was calculated from each curve according to Equation 1. The mean IC_{50} values were expressed to three significant figures, and the corresponding standard deviation values were rounded off to the same decimal places. When one or more IC_{50} values out of three were greater than 50.0 μM, which was the highest concentration of each test compound added, those values were treated as 50.0 μM to calculate the mean IC_{50} value, which was described with a mark " > " without the standard deviation.

Equation 1:

\[\text{IC}_{50} = \frac{(50\% - \text{Low } \%)}{(\text{High } \% - \text{Low } \%)} \times ((\text{High conc.} - \text{Low conc.})/\text{Low conc.}) \]

where Low % is the highest % inhibition less than 50%, Low conc. is the concentration of the test substance at the Low %, High % is the lowest % inhibition greater than 50%, and High conc. is the concentration of the test substance at the High %. The detailed information is described in the following web site.

Results

Inhibitory effects of thienopyridines on activities of cytochromes P450: The inhibitory effects of the test compounds (ticlopidine, clopidogrel, prasugrel, clopidogrel acid metabolite, 2-oxo-clopidogrel, R-95913, clopidogrel active metabolite and R-138727) on the formation of the metabolites of the CYP-specific fluorescent substrates were examined using a high throughput method. To ensure the reliability of these experiments, typical chemical inhibitors of cytochromes P450 were used as positive controls. For each cytochrome P450, the v/v_0 values were plotted against the logarithmic concentra-

Fig. 2. Inhibitory effects of ticlopidine, clopidogrel and prasugrel on various cytochromes P450

Microsomes overexpressing CYP1A2 (a), CYP2A6 (b), CYP2B6 (c), CYP2C8 (d), CYP2C9 (e), CYP2C19 (f), CYP2D6 (g), CYP2E1 (h) or CYP3A4 (i) were co-incubated at 37°C with ticlopidine (●), clopidogrel (▲), prasugrel (×) or each typical inhibitor (●). All test compounds and typical chemical inhibitors were dissolved in acetonitrile. Each mean v/v_0 value was calculated from each of three duplicate experiments, and the mean of three values and the standard deviation are expressed as the mean ± standard deviation.
The inhibitory effects of R-95913, 2-oxo-clopidogrel and clopidogrel acid metabolite on various cytochromes P450.

Microsomes overexpressing CYP1A2 (a), CYP2A6 (b), CYP2B6 (c), CYP2C8 (d), CYP2C9 (e), CYP2C19 (f), CYP2D6 (g), CYP2E1 (h) or CYP3A4 (i) were co-incubated at 37°C with R-95913 (●), 2-oxo-clopidogrel (▲), clopidogrel acid metabolite (×) or each typical inhibitor (♦). All test compounds and typical chemical inhibitors were dissolved in acetonitrile. Each mean v/v0 value was calculated from each of three duplicate experiments, and the mean of three values and the standard deviation are expressed as the mean ± standard deviation.

Fig. 3. Inhibitory effects of R-95913, 2-oxo-clopidogrel and clopidogrel acid metabolite on various cytochromes P450.

All the compounds tested weakly to moderately inhibited CYP2C9 (IC50 values of >13.4 μM), CYP2C8...
Inhibitory effects of clopidogrel active metabolite and R-138727 on various cytochromes P450

Microsomes overexpressing CYP1A2 (a), CYP2A6 (b), CYP2B6 (c), CYP2C8 (d), CYP2C9 (e), CYP2C19 (f), CYP2D6 (g), CYP2E1 (h) or CYP3A4 (i) were co-incubated at 37°C with clopidogrel active metabolite (), R-138727 () or each typical inhibitor (). All test compounds and typical chemical inhibitors were dissolved in acetonitrile. Each mean value was calculated from each of three duplicate experiments, and the mean of three values and the standard deviation are expressed as the mean ± standard deviation.

Discussion

In this study, we performed the assays to measure the potential for the thienopyridines and their respective thiolactones to inhibit a cytochrome P450 activity using a well-established high throughput method using a microtiter plate and isoform-specific fluorescent probe substrates. We determined the IC50 values without preincubation in the presence of both NADPH and the thienopyridines.

As shown in Table 1, ticlopidine strongly inhibited CYP2B6, CYP2C19 and CYP2D6 activities, and clopidogrel also showed strong inhibition of CYP2B6 and CYP2C19 activities. On the other hand, the inhibitory effects of 2-oxo-clopidogrel, prasugrel and R-95913 on these cytochromes P450 were weak to almost moderate. Extent of the inhibitory effects of ticlopidine, clopidogrel and R-95913 on cytochromes P450 in this study was comparable with those in the previous literatures,13,22)
Table 1. IC_{50} values of test compounds in inhibiting each isoform of cytochrome P450

<table>
<thead>
<tr>
<th>Compound</th>
<th>CYP1A2</th>
<th>CYP2A6</th>
<th>CYP2B6</th>
<th>CYP2C8</th>
<th>CYP2C9</th>
<th>CYP2C19</th>
<th>CYP2D6</th>
<th>CYP2E1</th>
<th>CYP3A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive control</td>
<td>4.50</td>
<td>0.225</td>
<td>9.92</td>
<td>1.91</td>
<td>0.782</td>
<td>3.07</td>
<td>0.0212</td>
<td>4.11</td>
<td>0.0516</td>
</tr>
<tr>
<td>(0.90)</td>
<td>(0.009)</td>
<td>(0.59)</td>
<td>(0.82)</td>
<td>(0.430)</td>
<td>(0.98)</td>
<td>(0.0204)</td>
<td>(1.71)</td>
<td>(0.0117)</td>
<td></td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>12.4</td>
<td>49.1</td>
<td>0.0517</td>
<td>43.9</td>
<td>>39.5</td>
<td>0.203</td>
<td>0.354</td>
<td>>50.0</td>
<td>>40.3</td>
</tr>
<tr>
<td>(6.2)</td>
<td>—</td>
<td>(0.0323)</td>
<td>(1.5)</td>
<td>—</td>
<td>(0.124)</td>
<td>(0.158)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>24.3</td>
<td>>50.0</td>
<td>0.0182</td>
<td>33.2</td>
<td>13.4</td>
<td>0.524</td>
<td>>37.4</td>
<td>>50.0</td>
<td>>40.5</td>
</tr>
<tr>
<td>(11.0)</td>
<td>—</td>
<td>(0.0069)</td>
<td>(0.8)</td>
<td>(7.7)</td>
<td>(0.160)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Prasugrel</td>
<td>>50.0</td>
<td>>50.0</td>
<td>1.19</td>
<td>>45.2</td>
<td>>36.5</td>
<td>10.4</td>
<td>34.3</td>
<td>>50.0</td>
<td>>34.6</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>(0.27)</td>
<td>—</td>
<td>(3.9)</td>
<td>(16.8)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>R-95913</td>
<td>>50.0</td>
<td>>50.0</td>
<td>2.30</td>
<td>>46.7</td>
<td>>44.0</td>
<td>13.7</td>
<td>>36.7</td>
<td>>50.0</td>
<td>>36.0</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>(0.75)</td>
<td>—</td>
<td>(2.7)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2-oxo-clopidogrel</td>
<td>>50.0</td>
<td>>50.0</td>
<td>1.30</td>
<td>33.9</td>
<td>>40.6</td>
<td>0.995</td>
<td>>41.1</td>
<td>>50.0</td>
<td>>40.8</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>(0.14)</td>
<td>(8.8)</td>
<td>(0.450)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Clopidogrel acid metabolite</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Clopidogrel active metabolite</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>35.1</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>R-138727</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
<td>>50.0</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

The IC_{50} value in μM was calculated from each mean ±/σ value obtained in each of three duplicate experiments. The mean of the three IC_{50} values and the standard deviation are reported.

![Fig. 5. Stability of clopidogrel active metabolite and R-138727 in the assay system](image)

Fig. 5. Stability of clopidogrel active metabolite and R-138727 in the assay system

Clopidogrel active metabolite (■) or R-138727 (▲)(final concentration: 5 μM) was preincubated at 37°C with 16.25 μM NADP, 825 μM MgCl2, 825 μM glucose 6-phosphate, 0.4 units/mL glucose 6-phosphate dehydrogenase (final concentrations) for 10 min. After adding human liver microsomes (final concentration: 1 mg/ml protein) without glutathione, the mixture was incubated for 0, 15, 30 and 45 min. Each residual ratio to the concentration at 0 min was calculated. The data are expressed as the mean ± standard deviation.

Even though ticlopidine was a weaker inhibitor in some articles likely due to the difference of the experimental conditions,14,16,17,23 Consistent with the results obtained in the present study, clinical trials by Turpeinen et al.26 reported that both clopidogrel and ticlopidine significantly inhibit CYP2B6-catalyzed hydroxylation of a monocyclic antidepressant drug, bupropion. In contrast, prasugrel was recently shown to have much less of an effect of CYP2B6 in humans compared to that previously reported with clopidogrel and ticlopidine.29 The maximum concentrations at the inlet to the liver (I_{inlet, max}) in a clinical setting, estimated as maximum plasma concentrations in portal vein, of ticlopidine, clopidogrel and R-95913 are 18.2 μM, 8.05 μM and 1.94 μM, respectively, which were calculated using the equation as follows: I_{inlet, max} = C_{max} + (k_{a} \times \text{Dose} \times \text{fa/QH}), where the C_{max} values of ticlopidine, clopidogrel and R-95913 are 2540 nM, 11.7 nM and 265 nM, respectively.28,32 The ratio of I_{inlet, max} to IC_{50} of R-95913 is much lower than those of ticlopidine and clopidogrel for CYP1A2, CYP2B6, CYP2C9, CYP2C19 and CYP2D6, even though there is no remarkable difference regarding
CYP2A6, CYP2C8, CYP2E1 and CYP3A4, indicating that the effect of prasugrel on pharmacokinetics of concomitantly administered drugs would be predicted to be lower than those of ticlopidine and clopidogrel.

Previous studies showed that 2-oxo-clopidogrel is not formed in human intestinal S9 and only at a very low level in human liver S9.30 In addition, a recent report confirmed that carboxylesterase 1, the primary carboxylesterase in human liver, is the enzyme responsible for clopidogrel hydrolysis to its inactive acid metabolite.30 Even though clopidogrel is substantially hydrolyzed to its acid metabolite, which circulates as a major metabolite in human plasma, clopidogrel acid metabolite showed no inhibitory effects on cytochromes P450. These data suggest that clopidogrel itself is the main moiety in terms of liver exposure and also the one possibly responsible for drug-drug interactions.

In contrast, prasugrel is rapidly hydrolyzed to R-95913 by carboxylesterase 2, which is predominant in the intestine, carboxylesterase 1, and/or other hydroases. The rate of hydrolysis is at least 25 times faster with human carboxylesterase 2 than with carboxylesterase 1.30 Previous studies showed that prasugrel may not be absorbed into the portal vein unmodified.30 In addition, CYP3A, which accounts for about 80% of the total CYP content in human intestine, was shown to be one of main CYPs responsible for metabolism of R-95913 to R-138727.13 Thus in the case of prasugrel, the main moieties in terms of liver exposure are R-95913 and R-138727. Prasugrel was rapidly hydrolyzed to R-95913 even in microsomes of liver exposure are R-95913 and therefore, the inhibitory effects of prasugrel and R-95913 were quite similar (Table 1).

It has been shown that the sulphydryl group of the active metabolite of thienopyridines has a crucial role in antiplatelet activity, binding covalently to the cysteine residues of the ADP receptors on the platelets.31 Therefore, we evaluated the inhibitory effects of the active metabolites of clopidogrel and prasugrel on the cytochromes P450 on the grounds that the sulhydryl group has the potential of binding to cysteine residues of cytochrome P450. However, the inhibition of activities of cytochromes P450 by the active metabolites was negligible, indicating that the sulhydryl group of these active metabolites is less likely to bind to these cytochrome P450 isoforms through disulfide bond formation. Richter et al. proposed previously that the mechanism based inhibition of CYP2B6 by clopidogrel could be caused by disulfide bond formation between the active metabolite and the enzyme protein.22 The finding described above in the present study may exclude such possibility. In addition, CYP2B6 inhibition by clopidogrel was much more potent than that by 2-oxo clopidogrel (Table 1). It is quite likely that the mechanism based inhibition of CYP2B6 by clopidogrel is due to chemically reactive metabolites produced in the process of conversion of clopidogrel to the 2-oxo-clopidogrel, in which S-oxidation or epoxidation of the thiophene ring is believed to be involved, as in the case of mechanism based inhibition of CYP2C19 reported for ticlopidine, and as was discussed by Farid et al.14,17,29

In conclusion, the present results indicate that prasugrel would have a lower potential of metabolic drug-drug interaction compared to ticlopidine and clopidogrel.

References

