Cannabidiol Is a Potent Inhibitor of the Catalytic Activity of Cytochrome P450 2C19

Rongrong JIANG1, Satoshi YAMAORI1, Yasuka OKAMOTO1, Ikuo YAMAMOTO2 and Kazuhito WATANABE1,3,*

1Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
2Department of Hygienic Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Japan
3Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan

Summary: The present study investigated the inhibitory effect of cannabidiol (CBD), a major constituent of marijuana, on the catalytic activity of cytochrome P450 2C19 (CYP2C19). (S)-Mephenytoin 4’-hydroxylase activities of human liver microsomes (HLMs) and recombinant CYP2C19 were inhibited by CBD in a concentration-dependent manner (IC50 = 8.70 and 2.51 µM, respectively). Omeprazole 5-hydroxylase and 3-O-methylfluorescein O-demethylase activities in recombinant CYP2C19 were also strongly inhibited by CBD (IC50 = 1.55 and 1.79 µM, respectively). Kinetic analysis for inhibition revealed that CBD showed a mixed-type inhibition against (S)-mephenytoin 4’-hydroxylation by recombinant CYP2C19. To clarify the structural requirements for CBD-mediated CYP2C19 inhibition, the effects of CBD-related compounds on CYP2C19 activity were examined. Olivetol inhibited the (S)-mephenytoin 4’-hydroxylase activity of recombinant CYP2C19 with the IC50 value of 15.3 µM, whereas d-limonene slightly inhibited the activity (IC50 > 50 µM). The inhibitory effect of CBD-2’-monomethyl ether (IC50 = 1.88 µM) on CYP2C19 was comparable to that of CBD, although the inhibitory potency of CBD-2’,6’-dimethyl ether (IC50 = 14.8 µM) was lower than that of CBD. Cannabidivarin, possessing a propyl side chain, showed slightly less potent inhibition (IC50 = 3.45 µM) as compared with CBD, whereas orcinol and resorcinol did not inhibit CYP2C19 activity at all. These results indicate that CBD caused potent CYP2C19 inhibition, in which one free phenolic hydroxyl group and the pentyl side chain of CBD may play important roles.

Keywords: cannabidiol; CYP2C19; inhibition; structural requirement

Introduction

Cannabidiol (CBD), one of the major constituents of marijuana, is not psychoactive in contrast to Δ9-tetrahydrocannabinol (Δ9-THC), and has several pharmacological effects such as drug-induced prolongation of sleep, antiepileptic, anxiolytic, and antiemetic actions.5 Some of these effects may be of therapeutic importance. Recent reports have also shown that CBD has great therapeutic potential in the treatment of diabetic complications6 and liver fibrosis.7 Sativex®, a medicine from marijuana extracts containing CBD, has been clinically used for the treatment of neuropathic pain and spasticity in multiple sclerosis.4,7

CBD is usually consumed by smoking or by sublingual or oral ingestion. After its absorption, CBD is mainly eliminated from the body by a metabolic process that occurs primarily in the liver. Among the metabolic pathways of CBD in humans, the major one is considered to be oxidation on a carbon atom at the C-7 position followed by further hydroxylation in the pentyl side chain and terpene moiety.5 This finding has been partly supported by our recent in vitro work indicating that CBD is primarily oxidized at the 7-position as well as at the 6- and 4’-positions by human liver microsomes (HLMs).10 Furthermore, we demonstrated that CBD 7-hydroxylation is predominantly catalyzed by cytochrome P450 2C19 (CYP2C19).10

Received November 7, 2012; Accepted December 28, 2012
J-STAGE Advance Published Date: January 15, 2013, doi:10.2133/dmpk.DMPK-12-RG-129
*To whom correspondence should be addressed: Kazuhito WATANABE, Ph.D., Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan. Tel. +81-76-229-6220, Fax. +81-76-229-6220, E-mail: k-watanabe@hokuriku-u.ac.jp
This work was supported in part by a Grant-in-Aid for Young Scientists (B) and Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the Academic Frontier Project for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan (2005–2009).
CYP2C19 is known to be a highly polymorphic enzyme in the liver, and is involved in the metabolism of various clinically important drugs such as (S)-mephenytoin,13) omeprazole,12) lanosoprazole,13) phenytoin,14) diazepam,15) and escitalopram.16) It has been also reported that an antiplatelet agent clopidogrel is metabolized to a pharmacologically active metabolite in part by CYP2C19.17) A loss of function of polymorphic CYP2C19 has been also reported that an antiplatelet agent clopidogrel is carried out at 37°C for 40 and 20 min, respectively. Reactions were stopped by adding 100 µl of ice-cold acetonitrile. After centrifugation, the supernatant was subjected to a high-performance liquid chromatography (HPLC) (D-7500 integrator, L-7100 pump, L-2200 autosampler, and L-7420 UV detector, Hitachi, Tokyo, Japan) equipped with a Mightysil RP-18 GP column (4.6 mm × 250 mm, 5 µm, Kanto Chemical, Tokyo, Japan). The mobile phase, which was delivered at a flow rate of 0.8 ml/min, consisted of acetonitrile: 50 mM sodium phosphate buffer (pH 4.0) with phosphoric acid (26.74, v/v) for (S)-mephenytoin, or acetonitrile: 50 mM sodium phosphate buffer (pH 8.5) (25:75, v/v) for omeprazole. The formation of 4’-hydroxymephenytoin and 5-hydroxyomeprazole was monitored at wavelengths of 204 and 302 nm, respectively.

The OMF O-demethylase activity, which has been used as a fluorescent marker of CYP2C19,22) was determined by using a 96-well microtiter plate as described below. An incubation mixture consisted of recombinant CYP2C19 (8 pmol), OMF, an NADPH-generating system (0.5 mM NADP, 10 mM glucose 6-phosphate, 10 mM magnesium chloride, and 1 unit/ml glucose-6-phosphate dehydrogenase), and 100 mM potassium phosphate buffer (pH 7.4) in a final volume of 200 µl. After preincubation at 37°C for 10 min, reactions were initiated by the addition of the NADPH-generating system. Fluorescence derived from fluorescein formation was recorded every 3 min for 30 min using FLUOstar OPTIMA® (BMG Labtech, Offenburg, Germany) with excitation and emission filters at 480 and 555 nm, respectively.

To determine the kinetic parameters for (S)-mephenytoin 4’-hydroxylation, omeprazole 5-hydroxylation, and OMF O-demethylation by HLMs and/or recombinant CYP2C19, (S)-mephenytoin (16 to 1,000 µM), omeprazole (0.25 to 32 µM), or OMF (1 to 10 µM) was incubated with each enzyme source under the same conditions as mentioned above. In preliminary experiments, these reaction conditions were confirmed to ensure linear initial rates for the formation of 4’-hydroxymephenytoin, 5-hydroxyomeprazole, and fluorescein. Data points were fitted to the Michaelis-Menten equation by nonlinear least-squares regression analysis with Origin 7.5J software (OriginLab, Northampton, MA).

Inhibition studies: HLMs and recombinant CYP2C19 were incubated with (S)-mephenytoin (60 µM), omeprazole (2 µM), or OMF (4 µM) in the presence of test compounds including cannabinoids (up to 50 µM) in the same manner as described for the enzyme assays. All compounds were dissolved in dimethylsulfoxide and added to the incubation mixture at a final dimethylsulfoxide concentration of ≤0.8%. The IC₅₀ values were calculated by nonlinear least-squares regression analysis with Origin 7.5J software (OriginLab).

To characterize the enzyme kinetics for the inhibition of CYP2C19 by CBD and its structurally related compounds, the effects of three or four different inhibitor concentrations on (S)-mephenytoin 4’-hydroxylation were examined at five substrate concentrations. The apparent Kᵢ value (inhibition constant) was determined from the x-intercept of a plot of apparent Kᵢ/Vₘₐₓ
Inhibition of CYP2C19 activity by CBD: To clarify enzymatic characteristics of HLMs and recombinant CYP2C19 used in this study toward (S)-mephenytoin 4’-hydroxylase, omeprazole 5-hydroxylase, and OMF O-demethylase activities, kinetic analyses were conducted with these enzyme sources. All of the reactions tested followed the Michaelis-Menten kinetics based on the Eadie-Hofstee plots (data not shown). The apparent K_m values for (S)-mephenytoin 4’-hydroxylation by HLMs and recombinant CYP2C19 were 70.2 and 50.8 µM, respectively (Table 1). The K_m values for omeprazole 5-hydroxylation and OMF O-demethylation by recombinant CYP2C19 were 1.26 and 2.32 µM, respectively (Table 1).

Thus, the effect of CBD on CYP2C19 activity was investigated at substrate concentrations of 60 µM (S)-mephenytoin, 2 µM omeprazole, and 4 µM OMF. CBD inhibited (S)-mephenytoin 4’-hydroxylase activities of HLMs and recombinant CYP2C19 in a concentration-dependent manner (Fig. 1A), showing the IC50 values of 8.70 and 2.51 µM, respectively. CBD also efficiently inhibited omeprazole 5-hydroxylase and OMF O-demethylase activities of recombinant CYP2C19 with the IC50 values of 1.55 and 1.79 µM, respectively (Figs. 1B and 1C).

In addition, the inhibitory effect of N-3-BPB, a CYP2C19-selective inhibitor,37,38 on the catalytic activities of HLMs and recombinant CYP2C19 was investigated. The (S)-mephenytoin 4’-hydroxylase activities of HLMs and recombinant CYP2C19 were strongly inhibited by N-3-BPB with the IC50 values of 0.254 and 0.320 µM, respectively. The omeprazole 5-hydroxylase and OMF O-demethylase activities of recombinant CYP2C19 were inhibited by N-3-BPB with the IC50 values of 0.822 and 0.355 µM, respectively. The inhibitory effects of N-3-BPB on CYP2C19 activities in this study were comparable to the previous findings.37,38

Structural requirements for inhibition of CYP2C19 activity by CBD

The inhibitory effects of CBD-related compounds on CYP2C19 activity were examined to elucidate the structural requirements for CYP2C19 inhibition by CBD. In these inhibition studies, recombinant CYP2C19 was used as an enzyme source. CBD consists of terpene and pentylresorcinol moieties, as shown in Fig. 2A. To determine which moiety of CBD is important in CYP2C19 inhibition, inhibition studies were conducted with d-limonene and olivetol, which correspond to the terpene and pentylresorcinol moieties of CBD, respectively. d-Limonene exhibited...
slight inhibition against CYP2C19-mediated (S)-mephenytoin 4′-hydroxylation (Fig. 2B). In contrast, olivetol inhibited the (S)-mephenytoin 4′-hydroxylase activity in a concentration-dependent manner (Fig. 2B); its inhibitory potency (IC$_{50}$ = 15.3 µM) was less potent than that of CBD. Similar profiles were also seen when omeprazole and OMF were used as substrates (Table 2).

To elucidate whether the two free phenolic hydroxyl groups of CBD have a role in inhibition of CYP2C19, the inhibitory effects of two methylated derivatives of CBD were examined. A monomethylated derivative of CBD, CBDM (Fig. 2A), showed strong inhibition against CYP2C19-mediated (S)-mephenytoin 4′-hydroxylation (Fig. 2C). The inhibitory effect of CBDM (IC$_{50}$ = 1.88 µM) was comparable to that of CBD. A dimethylated derivative of CBD, CBDD (Fig. 2A), inhibited CYP2C19 activity in a concentration-dependent manner (Fig. 2C), although the inhibitory potency of CBDD (IC$_{50}$ = 14.8 µM) was weaker than that of CBD. These results suggested that either of the two free phenolic hydroxyl groups in the resorcinol moiety of CBD may be required for potent CYP2C19 inhibition. CBDM contains a free phenolic hydroxyl group and is rotatable between terpene and resorcinol.
moieties, while Δ9-THC has a free phenolic hydroxyl group and is structurally constrained due to the presence of a dibenzopyran structure (Fig. 2A). Thus, to determine what configuration of CBD contributes to CYP2C19 inhibition, the inhibitory effect of Δ9-THC was compared with that of CBDM. Δ9-THC caused CYP2C19 inhibition (Fig. 2D); its inhibitory effect (IC50 = 4.35 µM) was less potent than that of CBDM. Similar inhibitory effects were observed when omeprozole and OMF were used as substrates, although the inhibition of OMF O-demethylation by CBDD was less effective as compared with that of the other CYP2C19-mediated oxidations (Table 2).

CBD, as well as olivetol, contains a pentyl side chain in its structure. To determine the importance of the pentyl group of CBD in CYP2C19 inhibition, inhibition experiments were carried out with CBDV, orcinol, and resorcinol. CBDV, having a shorter side chain (Fig. 2A), inhibited the (S)-mephenytoin 4'-hydroxylase, omeprozole 5-hydroxylase, and OMF O-demethylase activities; its inhibitory effect (IC50 = 3.45, 3.75, and 3.78 µM, respectively) was slightly less potent than that of CBD (Fig. 2E and Table 2). On the other hand, orcinol, possessing a methyl side chain and resorcinol without the alkyl side chain (Fig. 2A), did not inhibit these activities at all (Fig. 2E and Table 2), although the inhibitory effect of orcinol on (S)-mephenytoin 4'-hydroxylation could not be determined due to the partial overlapping of UV spectra of 4'-hydroxymephenytoin and orcinol on a HPLC chromatogram.

To determine the role of the 8,9-double bond of the terpene moiety in CBD for CYP2C19 inhibition, the inhibitory effect of 2H-CBD, a CBD analogue reduced on the 8,9-double bond (Fig. 2A), was investigated. 2H-CBD inhibited the (S)-mephenytoin 4'-hydroxylase, omeprozole 5-hydroxylase, and OMF O-demethylase activities of recombinant CYP2C19 more efficiently than CBD did (Fig. 2F and Table 2).

Kinetic analyses for inhibition of CYP2C19 activity by CBD and its structurally related compounds: Kinetic analysis for inhibition was conducted to characterize the mode of CYP2C19 inhibition by CBD and its structurally related compounds. CBD inhibited the (S)-mephenytoin 4'-hydroxylase activity of CYP2C19 in a mixed manner. The apparent Ki value of CBD was 0.793 µM (Table 3). Similarly, olivetol, CBDM, Δ9-THC, CBDV, and 2H-CBD exhibited a mixed-type inhibition against CYP2C19 (Table 3). On the other hand, CBDD competitively inhibited the CYP2C19 activity (Table 3). The resulting Ki values of these compounds correlated well with the corresponding IC50 values ($r^2 = 0.862$, p < 0.01).

Table 2. IC50 values of CBD-related compounds for inhibition of CYP2C19-mediated oxidations

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>2.51</td>
</tr>
<tr>
<td>d-Limonene</td>
<td>>50</td>
</tr>
<tr>
<td>Olivetol</td>
<td>15.3</td>
</tr>
<tr>
<td>CBDM</td>
<td>1.88</td>
</tr>
<tr>
<td>CBDD</td>
<td>14.8</td>
</tr>
<tr>
<td>Δ9-THC</td>
<td>4.35</td>
</tr>
<tr>
<td>CBDV</td>
<td>3.45</td>
</tr>
<tr>
<td>Resorcinol</td>
<td>>50</td>
</tr>
<tr>
<td>Orcinol</td>
<td>—</td>
</tr>
<tr>
<td>2H-CBD</td>
<td>0.821</td>
</tr>
</tbody>
</table>

Table 3. Kinetic parameters for inhibition of (S)-mephenytoin 4'-hydroxylase activity by CBD and its structurally related compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Ki (µM)</th>
<th>Mode of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>0.793</td>
<td>Mixed</td>
</tr>
<tr>
<td>Olivetol</td>
<td>2.71</td>
<td>Mixed</td>
</tr>
<tr>
<td>CBDM</td>
<td>0.454</td>
<td>Mixed</td>
</tr>
<tr>
<td>CBDD</td>
<td>3.40</td>
<td>Competitive</td>
</tr>
<tr>
<td>Δ9-THC</td>
<td>1.93</td>
<td>Mixed</td>
</tr>
<tr>
<td>CBDV</td>
<td>1.47</td>
<td>Mixed</td>
</tr>
<tr>
<td>2H-CBD</td>
<td>0.488</td>
<td>Mixed</td>
</tr>
</tbody>
</table>

Discussion

In the present study, we demonstrated that CBD efficiently inhibits human CYP2C19 activity. The Ki value of CBD for (S)-mephenytoin 4'-hydroxylase activity of recombinant CYP2C19 was comparable to those of lansoprazole and (S)-fluoxetine.39,40 The Ki values of CBD for other human CYP enzymes previously reported are listed in Table 4. The inhibition of CYP2C19 by CBD is the fourth most potent among 11 CYP enzymes examined. These results indicate that CBD is a potent inhibitor for CYP2C19. The mode of CYP2C19 inhibition by CBD was a mixed type that was similar to those of CYP 3A7,24,25 2B625 and 2C9.27

The results that (S)-mephenytoin 4'-hydroxylation, omeprazole 5-hydroxylation, and OMF O-demethylation by recombinant CYP2C19 followed the Michaelis-Menten kinetics reveal that there is a binding site of these substrates within the CYP2C19 active site. Since CBD inhibited the (S)-mephenytoin 4'-hydroxylase activity of CYP2C19 in a mixed manner, it is suggested that CBD may bind to the catalytic site and a site different from the position of (S)-mephenytoin binding within the CYP2C19 active site. It has been previously reported that (R)-fluoxetine, (S)-fluoxetine, and amitriptyline cause a mixed-type inhibition against CYP2C19.49 However, a structural characteristic showing such a mode of inhibition against CYP2C19 does not appear among these inhibitors including CBD.

In the study of structural requirements for inhibition of CYP2C19 activity, d-limonene failed to efficiently inhibit CYP2C19 activity. It has been previously reported that d-limonene is mainly oxidized at the 6- and 7-positions by CYP2C19.41 However, the binding affinity of d-limonene for CYP2C19 appears to be relatively low because the apparent Ki values for the CYP2C19-mediated d-limonene oxidations are approximately 300 µM.41 Thus, slight inhibition of CYP2C19 by d-limonene is compatible with the previous findings. On the other hand, the inhibitory profile of olivetol suggests that the pentylresorcinol structure in CBD is critical for CYP2C19 inhibition, although the whole structure of CBD is required for the overall inhibition of CYP2C19 activity. The structure of the pentylresorcinol moiety contains two free phenolic hydroxyl groups and a pentyl side chain. Inhibition studies with CBDM and CBDD suggest that one of the phenolic hydroxyl groups in CBD may be required for the interaction with CYP2C19. This is in contrast to the previous findings that both free phenolic hydroxyl groups in CBD contribute to the inhibition of CYP1A1, CYP2B6, CYP2D6, CYP3A4, and
CYP3A5.24–27) In addition, the inhibitory profiles of Δ^8-THC and CBDM suggest that the bulky structure of CBD may be preferentially recognized by CYP2C19.

The substitution of the pental group of CBD to a propyl group showed only a small change in the inhibitory effect on CYP2C19 activity. On the other hand, the further shortening of the side chain in the pentalresorcinol moiety resulted in a loss of CYP2C19 inhibition. Therefore, these results suggest that the pental side chain of CBD is also important in potent inhibition of CYP2C19.

It has been previously reported that oral administration of 300 mg or 600 mg CBD exhibits anxiolytic effects on healthy control patients and/or treatment-naïve patients with social anxiety disorder.35,42,43) To our knowledge, the highest oral dose of CBD in clinical use is 1,500 mg/day for the treatment of schizophrenia.44) The blood level of CBD 2 h after 600 mg of the cannabinoid was orally administered has been reported to be 17 ng/ml (0.054 µM).35) When the in vivo inhibition potency of CBD against CYP2C19 is determined from the blood concentration of CBD described above and the Ki value of CBD for the (S)-mephentoin 4'-hydroxylase activity of recombinant CYP2C19 by the methods of Obach et al.,33) the ratio of AUCi/AUC of CBD is estimated to be 3.12. The AUCi/AUC values of CBD for (S)-mephentoin 4'-hydroxylase activity of recombinant CYP2C19 was comparable to that of (R)-fluoxetine.40) Fluoxetine has been reported to be capable of altering CYP2C19 activity at doses of 20 and 40 mg/day in young and elderly volunteers.45) Thus, it is suggested that in vivo inhibition of CYP2C19 by CBD might be caused after oral administration.

It is known that CBD accumulates in the fatty tissue due to high lipophilicity.46) It has been been previously reported that the mean plasma levels of CBD range from 5.9 to 11.2 ng/ml (0.019 to 0.036 µM) over 6 weeks of repetitive oral administration of CBD (700 mg/day).47) Furthermore, the plasma level of CBD averaged 1.5 ng/ml (0.0048 µM) one week after CBD treatment was discontinued. CBD could be stored for weeks in fatty tissues from which it could slowly release back into the blood and distribute into the liver. Therefore, CBD is eliminated over 2–3 weeks after its oral ingestion.47) From these studies and the present results, it is suggested that CBD may cause a drug-interaction with other drugs metabolized mainly by CYP2C19 in some cases. Phentoin, with a narrow therapeutic index, is mainly 4'-hydroxylated by CYP2C9 and to a minor extent by CYP2C19.14) The relative contribution of CYP2C19 to phentoin metabolism rises as phentoin concentrations increase, leading to saturation of CYP2C9.14) It has been previously reported that drugs that are potent inhibitors of CYP2C19 (but not of CYP2C9) increase plasma concentrations and/or toxicity of phentoin.58,49) Thus, much attention should be paid to the drug-drug interaction of CBD and phentoin.

In conclusion, we demonstrated that CBD is a potent inhibitor of CYP2C19. Our results suggest that one phenolic hydroxyl group and the pental side chain of CBD may be required for CYP2C19 inhibition and will provide reliable information for understanding the metabolic interaction of CBD with other drugs metabolized by CYP2C19 in the clinical situation.

Acknowledgments: We thank Dr. Yuukiho Shoyama (Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan) for generously providing CBDV.

References

1109 (2001).

