Drug Metabolism and Pharmacokinetics
Online ISSN : 1880-0920
Print ISSN : 1347-4367
ISSN-L : 1347-4367
Regular Articles
Glucuronidation and Subsequent Biliary Excretion of Mycophenolic Acid in Rat Sandwich-cultured Hepatocytes
Kazuhiro TETSUKANicolas GERSTKouichi TAMURAJeffrey N. MASTERS
Author information
JOURNAL FREE ACCESS

2014 Volume 29 Issue 2 Pages 129-134

Details
Abstract

  Rat sandwich-cultured hepatocytes (SCH) were used to correlate the in vitro hepatic disposition of mycophenolic acid (MPA) with published in vivo data, as well as mechanistic studies on drug-drug interaction. The major metabolite of MPA in SCH was 7-O-glucuronide (MPAG) followed by acyl-glucuronide (AcMPAG). MPAG and AcMPAG, but not MPA, showed significant in vitro biliary excretion with biliary excretion indexes (BEI) of 40% for MPAG and 45% for AcMPAG. While these BEIs were similar, the biliary excretion amount (BEA) of MPAG (120 pmol/mg protein) was orders of magnitude higher than that of AcMPAG (0.34 pmol/mg protein). Since MPAG is the major metabolite in in vivo bile, we propose that BEA is a better qualifier of biliary excretion. Quercetin inhibited MPAG and AcMPAG production, while chrysin inhibited only MPAG production, showing that chrysin is not a pan-glucuronidation inhibitor. Cyclosporin A (CysA) reduced the BEI of MPAG and increased intracellular MPA accumulation without changing MPAG amounts. These results suggest that CysA causes inhibition of biliary excretion of MPAG, as well as a mixed inhibition of glucuronidation of MPA and sinusoidal efflux of MPA/MPAG. In conclusion, the present study demonstrates a good agreement of hepatic MPA disposition between SCH and in vivo rats.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 by The Japanese Society for the Study of Xenobiotics
Previous article Next article
feedback
Top