1. 物質循環・動態

1-1 融雪期以前の地表面および表層土壌の再凍結による融雪水の浸透抑制効果

岩田幸良 1・根本 学 2・桑尾和伸 3・長谷川周一 2・柳井洋介 1,3・広田知良 1（北農研 2北海農 3学部）

【緒言】土壌が凍結すると透水性が低下するため、土壌凍結帯では春早く融雪水が表面流出により失われる呼ばれられている。しかし近年、凍結層が浅い場合には融雪水の浸透が抑制される場合があることが明らかになった。このため、気候変動の影響を考慮した二つの観測サイトにおいて、土壌凍結が発達したときの融雪水の浸透量を評価し、凍結層が融雪水の浸透を抑制する条件について考察した。

【材料と方法】冬期に降水量が多く、比較的暖かい札幌市と、札幌市の平均に降水量が少なく、寒冷な十勝平野の芽室町の北海道農業研究センター試験圃場に観測サイトを設置した。雪による断熱効果により、札幌市では自然条件で凍結層がほとんど形成されないため、除雪することで凍結深を発達させる試験区（除雪区）を設置した。この他、札幌・芽室の自然緩衝凍雪条件の試験区（対照区）を設置した。各試區で土壌水分量、凍結層を含む下層のマトリックスポテンシャル、土壌凍結深、積雪水量、降水量の観測をおこなった。観測期間は2008年11月～2009年3月である。マトリックスポテンシャルから計算された動水勾配と定常法による不飽和浸透流数の計測値から、ダによりフローマスを算出した。

【結果と考察】各処理区の最大凍結深と融雪期直前の凍結深（図19の実数値）は、札幌の除雪区が0.19 (0.15m)、対照区が0.17 (0.15)であった。

一方、融雪期の総降雪量に対する土壌への浸透量の割合は、札幌と対照区が50%以上であったのにに対し、札幌除雪区では5%以下で融雪水の浸透の抑制が示唆された。

札幌では融雪期前に2日ほど降雪があり、このときに除雪区では凍結層が薄かったため、土壌に浸透した水が表面の氷水が表層付近で凍結し、結果として除雪区における凍結深が薄いにもかかわらず融雪水の浸透が抑制されたと考えられる。

1-2 アニオン性界面活性剤の黑ぼく土への吸着に及ぼす電解質濃度の影響

黒野秀雄 1・森口昇輝 1・石岡周子 2（岡大環境 2岡大環境）

合成界面活性剤は、生物細胞を破壊するため、環境問題を引き起こすことが指摘されている。一方、有機物を汚染した土壌の浄化剤として利用が試みられている。しかし、土壌中の汚染物質の同定・移動機構は明らかでない。この点では、展望状況や電解質濃度がアニオン性界面活性剤の吸着現象に及ぼす影響を実験的に明らかにすることを目的とする。

実験には、黒田農大放牧場の表層土を用いた。土壌分類は多腐植質厚層黒腐殖土、土壌炭素含量3.18%、堆積土、CEC 12.3mmolc/kg (1mmol/LのK溶液)、AEC 0 mmolc/kg、Al 29 g/kg、Alp 1.4 g/100gであった。アニオン性界面活性剤として、錦水銀の炭酸塩溶液が酸性の標準アセチル化リソチーム (SDS) と、直鎖のアセチル化リソチーム (SDS) を用いた。

バッチ法により、界面活性剤溶液を土壌試料に添加して直ちに、上澄み液の濃度を測定し、DSS吸着量およびSDS除去量(吸着量×分解量)を求める。SDS除去量は、土壌試料中のS含量を測定し、その値から吸着量を求めた。電解質濃度の影響を明らかにするため、0-100mm NaCl溶液を用い、界面活性剤溶液は選択電極法、S含量測定は電解・う隆酸カリウム滴定法を用いた。

SDS吸着量は、時間とともに増大し、電解質濃度によるSDS除去量の相関は顕著ではない。DSS吸着量も電解質濃度による影響は認められなかった。一方、DSSの吸着量は、電解質濃度が高くなると顕著に増大した。DSS吸着量は、時間変化が認められなかった。

試料土壌は、負荷負の目的を持ち、アニオン性界面活性剤との間に電気的反応が働くが、電解質間相互作用により吸着している。DSS吸着に電解質濃度の影響が顕著に認められ、DSS吸着に電解質濃度の影響が明かでないのは、DSSの直鎖型炭素鎖の強い糸水性相互作用による考えられる。

1-3 黒ボク土壌における硝酸および硫酸イオンの層別分布

山田大介 1・前田守弘 1・加藤英孝 2・尾崎兼一 3・駒田充生 4（岡大環境 2農研 3山梨大 4中央農研）

【背景】黒ボク土壌からの硝酸態窒素 (NO₃⁻) 濃度を削減するには、吸着着基イオンである硫酸イオン (SO₄²⁻) の挙動を考慮する必要がある。しかし、深層土のNO₃⁻とSO₄²⁻吸着をあわせて調査した研究は極めて少ない。本研究では、地域および栽培管理の異なる黒ボク土壌深層においてNO₃⁻およびSO₄²⁻分布を調査し、両者の関連性を考察した。

【方法】茨城県谷和原にある野菜畑（以下、谷和原）の化学肥料区と無肥料区、鹿児島県の普通畑（以下、大畑）および茶園（以下、知覧）の各土壌を2〜5 mの深層まで連続的に採取し、NO₃⁻およびSO₄²⁻含塩量を測定した。谷和原では5年前から無施肥施用を2割削減しており、減施肥の調査結果と比較した。

【結果】全調査土壌において、NO₃⁻含有量が高い深度ではNO₃⁻でも高かった。しかし、谷和原の深さ370 cm付近ではSO₄²⁻含有量が少ないにもかかわらず、NO₃⁻が高くなる傾向が両処理区でみられた。300 cm以内の深層土壌は土壌の半分程度のAEがあり、約40 mg N kg⁻¹のNO₃⁻が含まれていた。減施肥によって深さ250 cmまでのNO₃⁻量は低下するのであり、脱離したNO₃⁻がより深層で再吸着することが示唆された。大畑では、施肥効率の良い作付けが行われており、深層土のNO₃⁻含有量は低かった。一方、同じ土壌起源をもとと考えられる知覧では、アカボト類層上部にNO₃⁻、SO₄²⁻をともに高濃度蓄積していた（263 mg N kg⁻¹、4995 mg S kg⁻¹）。また、同層下部ではSO₄²⁻含有量が3451 mg S kg⁻¹に減少したが、次に深層の汚著層で8358 mg S kg⁻¹に再び上昇した。以上より、NO₃⁻とSO₄²⁻分布は常に同調していたが、逆の傾向を示す場合もあり、今後はSO₄²⁻の起源や吸着メカニズム等の解明が必要である。