IV-1

世界の作物 FACE 研究の潮流とつくばみらい FACE のねらい

長谷川利拡（（独）農業環境技術研究所）

大気中の二酸化炭素（CO₂）濃度は、過去 200 年に 100ppm 以上上昇した。今後、CO₂排出削減に向けた取
り組みがなされたとしても、CO₂濃度は上昇を続け、
今世紀半ばには 470 ～ 570ppm、今世紀の終わりには 540
～ 970ppm にも到達するものと予測されている。CO₂濃
度の増加は、温暖化や水資源循環といった地球規模で
の環境変動の原因になるとともに、それ自体が光合成
や蒸散といった作物生理過程を介して、作物の生育、
収量、水利用に影響する。しかし、CO₂の影響は、こ
れらの直接的あるいは一次的な影響だけでなく、二
次の影響や後続の影響をも及ぼす。光合成の促進は、植生による炭素固定を高め、生
態系の炭素循環にも影響する。旺盛な植物の成長は、
無機養分の吸収を介して土壌養分の動態に影響する一
方、土壌養分の多寡は、植物の成長促進に影響する。
このように、光合成や蒸散といったガス交換に関連した
物質循環作用に対する広範な影響が示されている。こ
の結果、つくばみらいにおいて、将来、気候の異なる
ときの高 CO₂濃度下での収穫量や物質循環の影響
を把握するために、2000年に茨城県つくばみらい市で
開催された「つくばみらい FACE 研究の潮流」と題す
た研究会で、良好な結果が得られました。

開放系 CO₂固定 FACE は、CO₂の影響を屋外の環境のない条件
で調べるために、1989年にアメリカで始まった。以来、
様々な生態系を対象とした FACE 研究が、世界各地で実
施されてきた。現状、作物の変化を対象とした FACE 研
究で、一区の面積（長方形 28 ㎡）が集場場所の相互
の影響、気候の異なる環境条件で高 CO₂濃度下で実
施されている。開発された FACE 研究の通称は、二
次の影響や後続の影響をも及ぼす。光合成の促進は、植生による炭素固定を高め、生
態系の炭素循環にも影響する。旺盛な植物の成長は、
無機養分の吸収を介して土壌養分の動態に影響する一
方、土壌養分の多寡は、植物の成長促進に影響する。
このように、光合成や蒸散といったガス交換に関連した
物質循環作用に対する広範な影響が示されている。こ
の結果、つくばみらいにおいて、将来、気候の異なる
ときの高 CO₂濃度下での収穫量や物質循環の影響
を把握するために、2000年に茨城県つくばみらい市で
開催された「つくばみらい FACE 研究の潮流」と題す
た研究会で、良好な結果が得られました。

作物 FACE は、開発当初の最大の狙いは、開放系で高
CO₂による収穫の実証・定量的評価であった。各地で
実験結果が集積されるにつれて、CO₂処理は開放系
実験においても作物の収量を増加させること、その程
度は主要 C₄ 作物では、10-20% と類似していることが示
された。これらの増収は、光合成の促進によるもので
ある。一方、C₄ 作物では、高 CO₂による光合成の促進
は小さく、収量の増加もほとんど認められなかった。
ただし、C₃ 作物間でも、高 CO₂応答には種間差が認め
られる。たとえば、パイロジでは、28-50%、キャッ
サバでは 89% など、イネ科草類などよりもはるかに大
きい増収効果が報告されている。高 CO₂応答の種間差
のメカニズムは未解明の部分も多いが、各地の作物
FACE 研究は、CO₂濃度の単独の影響を調べることか
ら、温度・土壌水分条件などとの複合的な影響の解明や、
気候変動に適応する品種の特性解明に変化してきた。

イネの FACE 研究は、1998年に岩手県尾瀬町で始まり、
2010 年からは茨城県つくばみらい市において、より多
くの品種や温度、土壌条件下での CO₂応答のメカニ
ズム研究を学際的なチームで展開している。最近の結
果では、つくばみらいにおいて、来歴、形態の異なる
8 品種の CO₂応答を比較したところ、高 CO₂による増
収効果は品種間で 3-36% にも及ぶ大きな違いが示さ
れた。これには、株数、一穂粒数など、シグニン容量の
違いが深く関連していたが、登熟歩向の向上も、増収
効果を高めた重要な要素であることがわかった（
Hasegawa et al 2013, Functional Plant Biology, 40: 148-159）。}

高 CO₂条件下における品種間差異は、収量関連
形質だけでなくとどまらず、品質や物質循環に関わる多
くの形質においても認められている。これらの仕組みを
理解し、気候変動への適応や緩和技術の開発に役立て
ることが、つくばみらい FACE の重要な役割である。
また、世界的にみても FACE 研究サイトは限られている。
今後も各地の FACE グループと協力し、世界的な食料
問題の解決に寄与するとともに、モデル予測研究グルー
プとの連携を深めて、収量予測精度の向上に貢献し
たい。