作物生育に対する珪酸の影響（第五報）
水稲生育に対する耕土の深浅と珪酸施用の效果に就て

石橋 一
（橋本県農事試験場）

I 緒 言
水稲の栽培に當り、耕土深さ程生育良好にて収量大なる事は一般に認められ
たるところにして、之に関する研究成績は少なからず。著者は鉛を用ひて水稲
を栽培するに際し、深さかえはやるる鉛、単に土壌の量小なる場合には、肥料
施用量の多少に拘らず水稲の生育状況充分ならざる事を観察し、又此際水稲體
の珪酸含有量小なる事を見つめ、然れ共土壌の深さ或は量と永生転育との間に
珪酸が如何なる影響を及ぼすかにに関しては研究成績を見常らざるを以って、此
點に於て水稲に対する珪酸施用の效果は耕土の深浅と如何なる関係あるかを知ら
んため実験を行ふたり。

II 試 験 方 法
土壌 橋本県農事試験場内に於ける，数年間小麦及び蕎麦の無肥料栽培地土
壌を探り，土壌を破き、充分拝押して均一に混和しが試験に供したり。共分析成
績は第一表の如し。

第一表 供試土壌の分析成績

理学分析（風乾土百分中）									
落土	13.86	粗砂	20.40	細砂	27.33	微砂	12.12	货土	26.29

化学分析（風乾土百分中）

水分	1.81	落土	4.92	鉛酸	0.06	n/5鉛酸可溶鉛酸	0.04
焦解消失量	4.46	粗砂	3.36	硼酸	0.11	鉛土	0.02
熱騒酸不溶物	87.06	鋼	0.22	加里	0.07	鉛酸可溶鉛酸	0.17
創酸可溶鉛酸	0.17	鋼	0.63	鋼	0.12	創酸可溶鉛酸	0.36
石灰	0.06	煉土	0.16	鋼	0.19	pH	6.0

鉛 鉛は鋳鉄引板を以って製し，内径 9.3 寸，間隔形にて，高さは土壌の
深さより 1 寸高く，試験区別に應じて各々 2.1 寸，3.2 寸，5.4 寸，7.6 寸，9.8 寸
とせり。又底より 2 分の高さの位置に径 5 分の排水孔を設けたり。向各鉛
は高さ異るを以て，共体則は外壁よりの影響異る事を考へ，別に同大にて
高さの各々異なる鋳鉄引板引筒を作り，土壌を充たし，試験用鉛は共上に載せ
試験区別及び区制 第二表の如く、土壌の深さ 1.1 寸以上 8.8 寸迄に 5 区に分かた試験区 2 組を設け、一組には肥料、他の組には肥料及び珪酸を施用せり。一区は鉦 3 個より成る。

土壌を鉦に増充する際は砂利等を用ひず、又排土底土を區別せず、土壌全部を耕土し、土壌の深さは第二表に示す重量により定めたり、向土壌の重量は、豫め水田状態にて 1.1 寸の深さに増充するに要する風乾土壌の重量を計り、500 々なる結果を得たれば、他区は之を標準として定めたるもなり。

肥料及び珪酸 肥料は硫酸アンモニア（N 20.61%）、過塩酸石灰（P₂O₅16.49%）及び硫酸加里（K₂O 48.00%）を以て、珪酸は珪酸曹達を硫酸にて中和し、硫酸の反応始めも無きに至る迄水洗し、乾したる後風乾珪酸（SiO₂56.9%）を以て、第二表の通りを全量原体し土壌全部と均一に混合したり。

<table>
<thead>
<tr>
<th>試験区別</th>
<th>土壌の深さ（寸）</th>
<th>水田状態に於ける土壌の量（畳）</th>
<th>肥料要素施用量（g）</th>
<th>硅酸施用量（g）</th>
<th>风乾量</th>
</tr>
</thead>
<tbody>
<tr>
<td>塩酸</td>
<td>土壌 1.1 寸</td>
<td>1.1</td>
<td>500</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>土壌 22 寸</td>
<td>2.2</td>
<td>1000</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>末加</td>
<td>土壌 44 寸</td>
<td>4.4</td>
<td>2000</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>末加</td>
<td>土壌 66 寸</td>
<td>6.6</td>
<td>3000</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>末加</td>
<td>土壌 88 寸</td>
<td>8.8</td>
<td>4000</td>
<td>1.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

耕種法概要 昭和 11 年 5 月 25 日水稲（住吉）種子を 1 坪 2 合の割にて苗代に播下したり。苗代には反変硫酸アンモニア 8 質、過塩酸石灰（P₂O₅15.0%）8 質及び硫酸加里 4 質を原体に施したり。7 月 5 日鉦に肥料を施し、排水孔を閉じて灌水し、7 月 5 日約 8 寸に成長したる苗を、一鉦 3 本宛植付けたり。向播種及び植付は常地方に於ける一般の時期に行ひたるものなり。植付後鉦は毎度秋に上に置き、降雨の際及び夜間は硝子室内に共の他は露天に運び、出穂以後は畑空及び硝子室内に置きたり。生育中は灌水に注意し、又 9 月中旬より 10 月下旬の間に葉枯及び発生したるを以て之を捕捕し、10 月下旬排水孔を閉けて灌水せり。11 月 5 日成熟したるを以て地上部を刈り、硝子室内に吊し、乾燥するを待って収量他を調査したり。
III. 試験成績

草丈 8月1日以後約10日毎に最長葉の長さを計りて草丈とせり。共結果は第三表の知り。

第三表 草 丈（分）

<table>
<thead>
<tr>
<th>試験區別</th>
<th>8月1日</th>
<th>11日</th>
<th>21日</th>
<th>31日</th>
<th>9月11日</th>
<th>21日</th>
<th>10月1日</th>
<th>11日</th>
<th>21日</th>
<th>31日</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌1.1寸</td>
<td>130</td>
<td>175</td>
<td>210</td>
<td>252</td>
<td>270</td>
<td>279</td>
<td>278</td>
<td>290</td>
<td>278</td>
<td>290</td>
</tr>
<tr>
<td>土壌2.2寸</td>
<td>162</td>
<td>222</td>
<td>280</td>
<td>302</td>
<td>304</td>
<td>345</td>
<td>335</td>
<td>337</td>
<td>337</td>
<td>340</td>
</tr>
<tr>
<td>土壌4.4寸</td>
<td>190</td>
<td>263</td>
<td>291</td>
<td>324</td>
<td>344</td>
<td>373</td>
<td>365</td>
<td>367</td>
<td>368</td>
<td>368</td>
</tr>
<tr>
<td>土壌6.6寸</td>
<td>211</td>
<td>281</td>
<td>310</td>
<td>320</td>
<td>361</td>
<td>395</td>
<td>395</td>
<td>395</td>
<td>395</td>
<td>399</td>
</tr>
<tr>
<td>土壌8.8寸</td>
<td>206</td>
<td>289</td>
<td>313</td>
<td>329</td>
<td>365</td>
<td>404</td>
<td>398</td>
<td>403</td>
<td>402</td>
<td>407</td>
</tr>
<tr>
<td>土壌1.1寸</td>
<td>148</td>
<td>212</td>
<td>222</td>
<td>285</td>
<td>324</td>
<td>330</td>
<td>327</td>
<td>320</td>
<td>317</td>
<td>315</td>
</tr>
<tr>
<td>土壌2.2寸</td>
<td>187</td>
<td>251</td>
<td>287</td>
<td>302</td>
<td>312</td>
<td>335</td>
<td>330</td>
<td>328</td>
<td>318</td>
<td>319</td>
</tr>
<tr>
<td>土壌4.4寸</td>
<td>194</td>
<td>274</td>
<td>310</td>
<td>332</td>
<td>348</td>
<td>353</td>
<td>352</td>
<td>349</td>
<td>350</td>
<td>352</td>
</tr>
<tr>
<td>土壌6.6寸</td>
<td>186</td>
<td>280</td>
<td>305</td>
<td>315</td>
<td>353</td>
<td>380</td>
<td>381</td>
<td>375</td>
<td>374</td>
<td>376</td>
</tr>
<tr>
<td>土壌8.8寸</td>
<td>198</td>
<td>286</td>
<td>313</td>
<td>328</td>
<td>361</td>
<td>392</td>
<td>385</td>
<td>383</td>
<td>382</td>
<td>385</td>
</tr>
</tbody>
</table>

上表によれば草丈は、各區共8月中は旺に伸長し、9月21日に殆んど最高に達し、以後は著しく変化なし。又珪酸無加用区並に珪酸加用区共に土壤深さ程大なり。土壤の深さ同一なる区を比較すれば8月中は明瞭に差異なきも9月以後は珪酸加用区大なり。是珪酸加用区に於ては長大なる草葉の生じたるためなり。

分葉数 草丈と同時に調査せり。其結果は第四表の知り。

第四表 分 葉 数（鉢常 本）

<table>
<thead>
<tr>
<th>試験區別</th>
<th>8月1日</th>
<th>11日</th>
<th>21日</th>
<th>31日</th>
<th>9月11日</th>
<th>21日</th>
<th>10月1日</th>
<th>11日</th>
<th>21日</th>
<th>31日</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌1.1寸</td>
<td>13</td>
<td>20</td>
<td>36</td>
<td>30</td>
<td>28</td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>土壌2.2寸</td>
<td>19</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>40</td>
<td>27</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>土壌4.4寸</td>
<td>35</td>
<td>52</td>
<td>50</td>
<td>36</td>
<td>36</td>
<td>34</td>
<td>30</td>
<td>31</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>土壌6.6寸</td>
<td>36</td>
<td>45</td>
<td>47</td>
<td>34</td>
<td>30</td>
<td>31</td>
<td>28</td>
<td>30</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>土壌8.8寸</td>
<td>43</td>
<td>53</td>
<td>53</td>
<td>37</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>33</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>土壌1.1寸</td>
<td>18</td>
<td>24</td>
<td>27</td>
<td>25</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>土壌2.2寸</td>
<td>30</td>
<td>44</td>
<td>44</td>
<td>32</td>
<td>26</td>
<td>27</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>土壌4.4寸</td>
<td>37</td>
<td>48</td>
<td>46</td>
<td>33</td>
<td>31</td>
<td>31</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>土壌6.6寸</td>
<td>34</td>
<td>46</td>
<td>45</td>
<td>33</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>土壌8.8寸</td>
<td>36</td>
<td>51</td>
<td>50</td>
<td>36</td>
<td>33</td>
<td>34</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

上表によれば分葉数は、珪酸無加用区並に珪酸加用区共に、概して土壤深さ程大なり。又分葉数の最大に達したるは、珪酸無加用区は8月11日、珪酸加用区は8月21日ににして、此時の分葉数は、同区深さの土壤に於ては概して珪酸加用区大なり。共後両区共急に分葉数を減じたるが。10月31日に至りては珪酸加用による差殆んど無し。之を珪酸加用区に於いては遅く迄分葉したるため無効分葉多々ありしによる可し。

収穫物 観、玄米及び蕎の収量試に就き及び玄米選別成績等につき調査せる成績を示せば次の如し。
<table>
<thead>
<tr>
<th>試験区別</th>
<th>銅</th>
<th>鋼</th>
<th>硫酸</th>
<th>硝酸</th>
<th>総量</th>
</tr>
</thead>
<tbody>
<tr>
<td>土塚</td>
<td>1.1寸区</td>
<td>1.2寸区</td>
<td>1.4寸区</td>
<td>平均</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>14.7</td>
<td>11.8</td>
<td>2.9</td>
<td>28.0</td>
<td>80.27</td>
</tr>
<tr>
<td>B</td>
<td>11.1</td>
<td>5.8</td>
<td>5.3</td>
<td>20.0</td>
<td>52.26</td>
</tr>
<tr>
<td>C</td>
<td>15.2</td>
<td>12.0</td>
<td>3.2</td>
<td>28.0</td>
<td>79.85</td>
</tr>
<tr>
<td>平均</td>
<td>15.3</td>
<td>9.9</td>
<td>3.8</td>
<td>25.3</td>
<td>70.49</td>
</tr>
<tr>
<td>環</td>
<td>2.2寸区</td>
<td>2.4寸区</td>
<td>2.8寸区</td>
<td>平均</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>34.0</td>
<td>25.4</td>
<td>8.6</td>
<td>48.0</td>
<td>74.71</td>
</tr>
<tr>
<td>B</td>
<td>30.3</td>
<td>23.7</td>
<td>6.6</td>
<td>51.5</td>
<td>78.22</td>
</tr>
<tr>
<td>C</td>
<td>32.8</td>
<td>23.9</td>
<td>8.9</td>
<td>46.5</td>
<td>72.87</td>
</tr>
<tr>
<td>平均</td>
<td>32.4</td>
<td>24.3</td>
<td>8.0</td>
<td>48.7</td>
<td>75.27</td>
</tr>
<tr>
<td>無</td>
<td>4.4寸区</td>
<td>6.6寸区</td>
<td>8.8寸区</td>
<td>平均</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>43.2</td>
<td>35.5</td>
<td>7.7</td>
<td>67.2</td>
<td>82.18</td>
</tr>
<tr>
<td>B</td>
<td>37.3</td>
<td>29.8</td>
<td>7.5</td>
<td>65.5</td>
<td>79.89</td>
</tr>
<tr>
<td>C</td>
<td>44.0</td>
<td>35.5</td>
<td>8.5</td>
<td>65.2</td>
<td>80.68</td>
</tr>
<tr>
<td>平均</td>
<td>44.1</td>
<td>36.1</td>
<td>7.9</td>
<td>66.0</td>
<td>80.92</td>
</tr>
</tbody>
</table>

備考 1) 銅に於けるgは全試験に於て是、玄米に於けるgは全玄米数に対するものなり。
2) 鈷に於ける褐色斑點の多少比較に於ける1/10 面とは鈷の表面積が10との意味なり。

上表に示す如く、玄米及び穂収量は、鈷酸加用区、窒に鈷酸無加用区共に土壌深さ程大なり。又同一土壌に於いては、鈷、玄米及び穂収量共に、鈷
石橋：作物生育に対する珪酸の影響（第五報）

<table>
<thead>
<tr>
<th>物質</th>
<th>焼却前の糖類の重量</th>
<th>焼却後の糖類の重量</th>
<th>糖類の変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>焼却率％</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>千粒数</td>
<td>同</td>
</tr>
<tr>
<td></td>
<td>完米粒数</td>
<td>不完米粒数</td>
<td>同</td>
</tr>
</tbody>
</table>

\[\text{糖類の変化} = \frac{\text{焼却前の糖類の重量} - \text{焼却後の糖類の重量}}{\text{焼却前の糖類の重量}} \times 100 \% \]

酸加用大なり。今珪酸加用による増収量を示せば第六表に示す。珪酸加用による種及び米の増収割合は土壌浸透短縮著しく大にして。土壌 1.1寸区

\[\text{増収割合} = \frac{\text{珪酸加用による増収量}}{\text{珪酸加用前の増収量}} \times 100 \% \]
第六表 硝酸加用による増加量％に対する割合
硝酸加用による増加量％ 硝酸加用による増加割合*

<table>
<thead>
<tr>
<th>土壌 畑区</th>
<th>種類（g）</th>
<th>玄米（g）</th>
<th>霜（g）</th>
<th>玄米（％）</th>
<th>霜（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌1.1寸区</td>
<td>8.8</td>
<td>7.9</td>
<td>4.3</td>
<td>64.2</td>
<td>79.8</td>
</tr>
<tr>
<td>土壌2.2寸区</td>
<td>10.5</td>
<td>10.5</td>
<td>4.1</td>
<td>32.4</td>
<td>43.2</td>
</tr>
<tr>
<td>土壌4.4寸区</td>
<td>11.2</td>
<td>9.0</td>
<td>7.1</td>
<td>27.0</td>
<td>28.8</td>
</tr>
<tr>
<td>土壌6.6寸区</td>
<td>10.2</td>
<td>8.8</td>
<td>6.6</td>
<td>22.0</td>
<td>23.7</td>
</tr>
<tr>
<td>土壌8.8寸区</td>
<td>3.5</td>
<td>2.9</td>
<td>4.9</td>
<td>6.1</td>
<td>6.4</td>
</tr>
</tbody>
</table>

備考 第五表の平均より算出し、*（(硝酸加用区増加量)/(硝酸無加用区増加量)×100）

の如き、種に於いて64.2％、玄米に於いて79.8％に達せり。硝酸加用による種の増加割合は、概して土壌浅き越程大なり。種組合せは、硝酸無加用区に於いては概して土壌深き越程小なるも、硝酸加用区に於いては此関係明瞭ならず。

比較物の品質 收穫物の品質調査のため種は内容物を有する結状物及び他の二種に区別し、玄米は充実したる完全米及び充実不充分にて不正形をなす不完全米の二種に区別し調査したり。共成績は第五表の如くそれによれば従来の報割合は、硝酸無加用区に於いては土壌1.1寸区最も低く約50％に過ぎざるも土壌の深さを増すと共に増加し、土壌8.8寸区は約83％に達せり。硝酸加用区に於いては一般に良好にて、共最も小なる土壌1.1寸区と雖も約83％を示せり。而して土壌深き越程増大させる共差は無硝酸区に於ける如く大ならす。

完全米割合は、硝酸無加用区に於いては、概して土壌深き越程大なり。硝酸加用区に於いては一般に良好にて且つ土壌の深さとの関係は明瞭ならす。

同一深さの土壌を比較すれば、結実報割合、完全米割合共に硝酸加用区大なり。而して硝酸加用による等報割合の増加は、土壌浅き区に於いて著し、即ち第七表の如し。

第七表 結実報割合及び完全米割合の硝酸加用による増加量
結実報割合（硝酸加用区割合）

<table>
<thead>
<tr>
<th>土壌畑区</th>
<th>種類（％）</th>
<th>玄米（％）</th>
<th>霜（％）</th>
<th>穂（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌1.1寸区</td>
<td>33.28</td>
<td>11.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌2.2寸区</td>
<td>16.49</td>
<td>5.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌4.4寸区</td>
<td>10.94</td>
<td>5.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌6.6寸区</td>
<td>14.37</td>
<td>3.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌8.8寸区</td>
<td>2.12</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考 第五表の平均数より算出し、玄米千粒重量は、硝酸加用区及び硝酸無加用区共に、概して土壌深き越程大なり。又同一深さの土壌区を比較すれば、概して硝酸加用区大なり。次に玄米の肉眼的鑑定による品質は福岡県農事試験場島根試験場を頻し次之の結果を得たり。
石橋: 作物生育に対する珪酸の影響（第五報）

酸無添加区は酸添加区に劣る。而して酸添加区と雑も普通よりは少し劣る。
土壤 1.1 寸区に於いては、酸添加区は土壤 2.2 寸酸添加区に少しく劣る程度なるが、珪酸添加区は著しく劣り極めて不良なり。

翅面に於ける褐色斑点の多少：9 月下旬以降に生する穂枯病様褐色斑点は、畑地方一般に毎年多少発生するものにて一種の病斑と考えられるも正確ならざるが、其の大なるは翅面の大部分に互りし、未完充実にて品質低下し甚だしくす甚米となる。此種の斑点は共他胡麻類枯病等の斑点をも含め
翅面に於ける褐色斑点の多少を調査した成績は第五表に示したが如し。

該表によれば翅面に於ける褐色斑点は、酸添加区に於ては土壤 1.1 寸区最多多く無添加区は僅に全株数の 41.3% に過ぎるも、土壤の深さを増すと共に減少し土壤 8.8 寸区は無添加区数 77.07% に達せり、酸添加区に於ては土壤の各深さを通じて褐色斑点少なく、変数も多き土壤 1.1 寸区と雖も無添加数 74.17% に達し、変異少なき土壤 8.8 寸区は無添加数 87.32% に達せり。

即ち硅酸の効果大なりと云はざる可らず。

収穫物の硅酸含量 収穫物中の硅酸含量を調査した成績は第八表の如し。

<table>
<thead>
<tr>
<th>試験 区別</th>
<th>器</th>
<th>風乾物</th>
<th>硅</th>
<th>風乾物</th>
<th>硅</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>土塚</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 寸区</td>
<td>A</td>
<td>12.93</td>
<td>3.55</td>
<td>10.36</td>
<td>14.12</td>
<td>11.17</td>
</tr>
<tr>
<td>B</td>
<td>12.62</td>
<td>3.78</td>
<td>9.86</td>
<td>3.71</td>
<td>9.21</td>
<td>11.84</td>
</tr>
<tr>
<td>C</td>
<td>13.40</td>
<td>3.96</td>
<td>10.50</td>
<td>13.43</td>
<td>10.46</td>
<td>12.12</td>
</tr>
<tr>
<td>平均</td>
<td>12.32</td>
<td>3.76</td>
<td>10.37</td>
<td>13.75</td>
<td>10.25</td>
<td>0.855</td>
</tr>
<tr>
<td>硅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 寸区</td>
<td>A</td>
<td>9.78</td>
<td>3.04</td>
<td>10.78</td>
<td>11.77</td>
<td>10.32</td>
</tr>
<tr>
<td>B</td>
<td>10.52</td>
<td>3.38</td>
<td>9.78</td>
<td>12.66</td>
<td>9.38</td>
<td>12.14</td>
</tr>
<tr>
<td>C</td>
<td>10.71</td>
<td>4.05</td>
<td>10.76</td>
<td>12.91</td>
<td>11.20</td>
<td>11.28</td>
</tr>
<tr>
<td>平均</td>
<td>10.33</td>
<td>3.49</td>
<td>12.45</td>
<td>10.30</td>
<td>1.516</td>
<td>0.737</td>
</tr>
<tr>
<td>無</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 寸区</td>
<td>A</td>
<td>10.17</td>
<td>4.28</td>
<td>9.50</td>
<td>14.29</td>
<td>11.97</td>
</tr>
<tr>
<td>B</td>
<td>10.14</td>
<td>4.21</td>
<td>10.00</td>
<td>12.71</td>
<td>10.31</td>
<td>12.26</td>
</tr>
<tr>
<td>平均</td>
<td>10.08</td>
<td>4.21</td>
<td>13.72</td>
<td>11.27</td>
<td>2.501</td>
<td>0.784</td>
</tr>
<tr>
<td>器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5 寸区</td>
<td>A</td>
<td>12.51</td>
<td>6.42</td>
<td>9.76</td>
<td>15.48</td>
<td>13.50</td>
</tr>
<tr>
<td>B</td>
<td>11.85</td>
<td>6.16</td>
<td>9.54</td>
<td>16.48</td>
<td>13.27</td>
<td>12.00</td>
</tr>
<tr>
<td>C</td>
<td>11.93</td>
<td>5.79</td>
<td>10.50</td>
<td>15.81</td>
<td>13.53</td>
<td>11.90</td>
</tr>
<tr>
<td>平均</td>
<td>12.10</td>
<td>6.12</td>
<td>15.92</td>
<td>13.43</td>
<td>3.760</td>
<td>1.094</td>
</tr>
<tr>
<td>無</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>12.79</td>
<td>7.37</td>
<td>10.48</td>
<td>16.18</td>
<td>14.08</td>
<td>11.98</td>
</tr>
</tbody>
</table>
前表によれば、珪酸無加用区に於いて、炭の硅酸含有量は土壌1.1寸区を除けば土壌の深くなる程なり、緑葉の硅酸含有量も同様なり、珪酸加用区に於いては炭、緑葉の硅酸含有量共土壌の深くなる程、著しく大なり。

続きに被覆物の硅酸含有量と第五表より一鉄壺硅酸吸収らを算出すれば第八表の如く、硅酸吸収量は硅酸無加用区に於いて、土壌1.1寸区最も少なく1.1911で、過するも、土壌の深さを増すと共に著しく増加し、土壌8.8寸区は6.336で、硅酸加用区に於いては各区共多量の硅酸を吸収せり。

足を考慮に、土壌の吸水に対する硅酸供給力は、土壌浸し程葉し土壌量小なる程小なるを以て、水稻の硅酸吸収量も炭水稻食の硅酸含有量も、之に役して変化したものなる可し。

IV 考察
硅酸無加用区に於いて土壌浸し程葉し、分葉数、結実割合、完成米割合等低く、従って稲、玄米及び炭収量小なるも、肥料施用量は同一なるも土壌に含有されるる各種の資分が土壌の深さに比例して減少したるに依るものと思へ得可し、唯土壌浸し程肥料の土壌への吸収充分ならず、土壌溶液の濃度高まり、水稻生育を害したりに非るかやとの點に関しては、植付後の活水状況を観察したる結果によれば、各区共異状を認めざりしがち、此點は考る硅葉のものに於
石橋: 作物生育に対する珪酸の影響(第五報) 547

非らざる可し、かくて珪酸に於いても、土壌浅き程水稻に対する供給力少なく、水稻は充分の珪酸を吸収し得ずして共の珪酸含量は低下したるものなら可し。

次に珪酸加用区に於て水稻量の珪酸含量は、土壌深き区は勿論、土壌浅き区と雖も著しく高まり、珪酸無加用区の何れの区よりも遂に大なるに至りたるのみならず、土壌の深浅による差異は殆ど消滅したり、即ち珪酸加用の結果、水稻に対する珪酸不足の影響は殆ど無きに至りたるものと考えて差支へなから可し。

兹に於いて珪酸無加用区と珪酸加用区とを比較して水稻生育に対する珪酸の影響を考へに、結實歩合、完全米割合、健全穂割合は、珪酸の加用により、土壌浅き区と雖も著しく上昇して、土壌の深浅による差異殆ど認め難きに至たり、即ち珪酸の不足が是等に及ばせし影響は大なりと云はざるべからず。

親及び玄米収量は土壌の各深さ共珪酸加用により増加せり、特に土壌浅き区に於いて増加大なり。従つて土壌の深浅による差異は減せり、即ち珪酸の不足が穂粒収量に及ばせし影響も亦大なりしと云ふ可し、掌丈及び収穫量等も珪酸の加用により増加せるが、共の程度は設置に於けるより小なり。

要するに土壌の深浅により共の水稻に対する珪酸及び共の他の養分供給力異り土壌浅き程水稻量の珪酸含量は低下し、生育収量に珪酸不足の影響を現はしたりるも、珪酸の施用により水稻は充分の珪酸を吸収し得て珪酸不足の影響は消へ収量増加せる者と考へ得べし。従つて珪酸施用の結果は土壌浅き程大なり。

他珪酸加用区に於いては、土壌浅き区と雖も珪酸無加用区の土壌深き区以上に水稻量の珪酸含量は大なりと云はるるに他らず、穂粒収量は之に及ぶに及らず、共に土壌浅きに於る珪酸以外の養分共他の足らざるに原因するものと若く、

Ⅴ 要　約

水稻生育に対する珪酸の影響が供土の深浅と如何なる関係あるかを知らんため、内訳 8.3 寸の被鉄板製の鉢を用ひ、土壌の深さ 1.1 寸より 8.8 寸迄を五区に分かちめ試験区二組を設け、共一組には肥料、他の組には肥料及び珪酸を施用して水稻(住米)を栽培し生育、収量、結實歩合、穂粒物の品質、穂に於ける褐斑斑点の多少、穂粒物の珪酸含量等を調査したり。

共成績によれば、珪酸無加用区に於いては、土壌浅き程 (1) 短丈低く、(2)分葉数少なく、(3)結實歩合小さく、(4) 穀粒割合小さく、(5)穂に於ける褐色斑点多く、(6)穂、玄米及び穂粒量、就中穂及び玄米収量特に少なく、(7)玄
米の品質は下り、(8)貯及び穂穂の硅酸含差及び一鉱硅酸吸収量は乏しく、
然るに硅酸加用の訳区に於いては、硅酸加用の結果、硅酸無加用区に比し、
(1) 水稲の硅酸含差は各区共著しく増し、硅酸無加用区に於ける何れの区よりも大となり且土壌の深浸による一定の差異殆んど無きに至れり。(2) 結實歩合、
完全無割合及び褐色斑点無き健全無割合は一般に増加し、特に土壌浸き区
に於いて著しく増加したり、土壌の深浸による一定の傾向は認め難きに至り
たり。(3) 籬収量玄米収量は土壌の各深浸共増が増したるが特に土壌浸き区に於いて増量大なり。即ち土壌1.1寸区に於いては、玄64.2％ 玄米79.8％ 增収せり。(4) 畑収量は土壌の各深浸共增が増したるが、共の程度は、畑収量に於ける如く
大ならず。(5) 玄米品質は、土壌浸き区に於いては上昇せり。
要するに土壌浸き程共の水稲に対する硅酸供給力小なるため、水稲稈の硅酸
含差低下し、生育収量に硅酸不足の影響を現はしたりも、硅酸の施用により、
水稲は充分の硅酸を吸収し得て、硅酸不足の影響は消へ収量を増加したりもの
と考へ得可し、従って硅酸の結果は、土壌浸き程大なり。

収量並に硅酸加用による増収割合を摘録すれば次の如し。

<table>
<thead>
<tr>
<th>試験区別</th>
<th>硅酸無加用区</th>
<th>硅酸加用区</th>
<th>硅酸加用による増収割合</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>穎</td>
<td>蒼</td>
<td>(g)</td>
</tr>
<tr>
<td>土壌1.1寸区</td>
<td>13.7</td>
<td>25.3</td>
<td>22.5</td>
</tr>
<tr>
<td>土壌2.2寸区</td>
<td>32.4</td>
<td>48.7</td>
<td>42.9</td>
</tr>
<tr>
<td>土壌4.4寸区</td>
<td>41.5</td>
<td>66.0</td>
<td>52.7</td>
</tr>
<tr>
<td>土壌6.6寸区</td>
<td>46.3</td>
<td>70.5</td>
<td>56.5</td>
</tr>
<tr>
<td>土壌8.8寸区</td>
<td>57.8</td>
<td>77.0</td>
<td>61.3</td>
</tr>
</tbody>
</table>

注: (昭和12年10月20日受理)
Abstract

The Effect of Silica on the Growth of Cultivated Plants V.

The Effect of Silica on the Growth of Rice Plants

Growing on Soils of Various Depth

Hajime Ishihashi

In a series of pots of following dimensions, with following depths of soil, fertilizer and silica supply, rice plants were raised, and the effects of silica were studied.

Dimensions of pots, depths and weights of soil, and fertilizer supplied.

<table>
<thead>
<tr>
<th>No. of pot</th>
<th>Pot inside diameter</th>
<th>Soil depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>cm</td>
<td>kg</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>6.3</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>9.6</td>
<td>6.6</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>16.2</td>
<td>13.2</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>22.8</td>
<td>19.8</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>29.4</td>
<td>26.4</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>6.3</td>
<td>3.3</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>9.6</td>
<td>6.6</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>16.2</td>
<td>13.2</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>22.8</td>
<td>19.8</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>29.4</td>
<td>26.4</td>
</tr>
</tbody>
</table>

The results can be summarized as follows:

1. The yields of grain and straw increased with soil depth.
2. The ratio of fertility, the ratio of the numbers of perfect grains to those of the total grains, and the silica contents in the plants increased and the brown spots on the surface of hulld grains decreased with soil depth.
3. The yields of grain and straw, both from the silica supplied and unsupplied pots, increased with soil depth, but for the same depth of soil the yield of grains from the former was greater than that from the latter.
4. As the result of silica supply, the ratio of fertility, the ratio of the numbers of perfect grains to those of the total grains, and the silica contents in the plants, greatly increased, and the brown spots on the surface of hulld grains decreased.
5. Above effects of silica on the growth of rice plants decreased with soil depth.

The yield and its increment due to silica supply were as follows:

<table>
<thead>
<tr>
<th>Depth of soil (cm)</th>
<th>Without silica</th>
<th>With silica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>build grain</td>
<td>straw</td>
</tr>
<tr>
<td>3.3</td>
<td>13.7</td>
<td>25.3</td>
</tr>
<tr>
<td>6.6</td>
<td>32.4</td>
<td>48.7</td>
</tr>
<tr>
<td>13.2</td>
<td>41.5</td>
<td>66.0</td>
</tr>
<tr>
<td>19.8</td>
<td>45.3</td>
<td>70.5</td>
</tr>
<tr>
<td>25.4</td>
<td>57.8</td>
<td>77.0</td>
</tr>
</tbody>
</table>