アンモニア態および硝酸態窒素適応性の作物種間差（第1報）
生育初期におけるアンモニア態および硝酸態窒素選択吸収能と生育応
——比較植物栄養に関する研究——
但野利秋*・田中信明*　

ここでいうアンモニア態および硝酸態窒素（以下NH₄⁺-N，NO₃⁻-N と略記する）とは、それぞれNH₄⁺およびNO₃⁻の形態の窒素を意味する。

土壌溶液中において、NH₄⁺-N と NO₃⁻-N が作物が吸収利用する窒素の主体であり、特に施肥条件下においてはこれら両形態窒素の濃度が上昇する。

これまでの報告によれば、両形態の窒素に対する生育反応には作物種間差が認められ、NH₄⁺-N または NO₃⁻-N が窒素源の場合、生育が良好な作物をそれぞれ良好アンモニア性または好硝酸性作物と呼び、イネ①、クランベリー②、ブルーベリー③などは好アンモニア性作物、また、トマト④，イチジク⑤，カブ⑥，カイコツ⑦，カランナ⑧，テンサイ⑨，ホウレンソウ⑩，タマネギ⑪，ライムギ⑫，ソウ⑬などは好硝酸性作物と考えられている。

しかし、これら両形態窒素に対する生育反応は、生育時期⑪，⑫、培床のpH⑪，⑫，培床中窒素濃度⑪，⑫，酸素供給状態⑪，⑫、他要素の供給状態⑪，⑫などによって影響を受け、生育条件によって好適窒素形態が選択することがある⑪，⑫，⑬。

一般に窒素源がNH₄⁺-Nの場合、NO₃⁻-Nの場合より高濃度による生育阻害を受けやすい⑭，⑮，たとえば、イネでは80 ppm NH₄⁺-N で生育阻害を受けるのに対し、240 ppm NO₃⁻-N でも阻害を非常に受けず⑭，イネで200 ppm NH₄⁺-N で生育阻害がおこるのに対し、200 ppm NO₃⁻-N では正常であるという⑮。

NH₄⁺-N による生育阻害の原因の一つとして、NH₄⁺を吸収する速度がこれを同化する速度よりも遅い場合に、NH₄⁺が体内に集積し、この蓄積が光合成酵素反応⑭，クロロプラストのCO₂固定⑭，根の呼吸⑭，UDPG経由のテンプシン合成⑭，吸水⑭などを阻害することが知られている。また、窒素源がNH₄⁺-Nの場合は特定のアミノ酸が集積し、その蓄積量⑭または各アミノ酸の不均衡⑭，⑮が生育阻害の原因となるとする説がある。

一方、NH₄⁺-N および NO₃⁻-N に対する選択吸収能にも種間差があり、イネ⑭，コムギ⑭，⑮では、すぐにとも

* 北海道大学農学部（札幌市北区北9条西9丁目）
昭和50年6月23日受理
日本土壌肥料科学雑誌 第47巻 第7号 p.321～328(1976)
第1表 供試作物と苗代日数

<table>
<thead>
<tr>
<th>No.</th>
<th>作物名</th>
<th>学名</th>
<th>品種名</th>
<th>科名</th>
<th>苗代日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ダイコン</td>
<td>Raphanus sativus L. var. hortensis BACKER</td>
<td>鳥無根</td>
<td>アブラナ科</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>カラシナ</td>
<td>Brassica juncea L.</td>
<td>森芥子</td>
<td>サラソウ科</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>キャベツ</td>
<td>Brassica oleracea L. var. capitata L.</td>
<td>ゴールデンエーカー</td>
<td>サラソウ科</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>ハクサイ</td>
<td>Brassica pekinensis Rupr.</td>
<td>春菘桜早生白菜</td>
<td>サラソウ科</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>ツババ</td>
<td>Fagopyrum esculentum Monch.</td>
<td>ボタンソバタデ科</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ニンジン</td>
<td>Daucus carota L.</td>
<td>鮮紅大型五寸人参</td>
<td>サンゲイ科</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>テンサイ</td>
<td>Beta vulgaris L. var. saccharifera ALFSELD</td>
<td>甜研1号</td>
<td>アガザ科</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>キウリ</td>
<td>Cucumis sativus L.</td>
<td>立秋胡瓜</td>
<td>ヒョウタン科</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>ダイズ</td>
<td>Glicyne max (L.) MERILL</td>
<td>北見白豆</td>
<td>マメ科</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>アズキ</td>
<td>Phaseolus radiatus L. var. aurea PRAIN</td>
<td>光小豆</td>
<td>マメ科</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>タマネギ</td>
<td>Allium cepa L.</td>
<td>札幌黄大玉葱</td>
<td>エリ科</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>ネギ</td>
<td>Allium fistulosum L. var. giganteum MARINO</td>
<td>石倉葱</td>
<td>エリ科</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>コムギ</td>
<td>Hordeum vulgare L.</td>
<td>ハルヒカリイネ</td>
<td>イネ科</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>エンパク</td>
<td>Avena sativa L.</td>
<td>前進</td>
<td>イネ科</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>イネ</td>
<td>Oryza sativa L.</td>
<td>ユーカラ</td>
<td>イネ科</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>トウモロコシ</td>
<td>Zea mays L.</td>
<td>パイオニア</td>
<td>イネ科</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>オオムギ</td>
<td>Triticum aestivum L.</td>
<td>ホシサマリ</td>
<td>イネ科</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>トマト</td>
<td>Lycopercicus esculentum MILL</td>
<td>夕寿2号</td>
<td>ナス科</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>キャベツ</td>
<td>Capsicum annuum L.</td>
<td>札幌大長ナンパン</td>
<td>ナス科</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>ペレゲイサ</td>
<td>Solanum tuberosum L.</td>
<td>男爵</td>
<td>イネ科</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>レタス</td>
<td>Lactuca sativa L.</td>
<td>ウェアヘッドキク</td>
<td>イネ科</td>
<td>20</td>
</tr>
</tbody>
</table>

第2表 基本培養液の組成

<table>
<thead>
<tr>
<th>原素</th>
<th>濃度 (ppm)</th>
<th>各原素の形態</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>68</td>
<td>NH₄NO3(40), NaNO3(28)</td>
</tr>
<tr>
<td>P</td>
<td>10</td>
<td>KH₂PO₄(10)</td>
</tr>
<tr>
<td>K</td>
<td>75</td>
<td>K₂HPO₄(15), KCl(22), K₂SO₄(43)</td>
</tr>
<tr>
<td>Ca</td>
<td>80</td>
<td>CaCl₂(27), CaSO₄(53)</td>
</tr>
<tr>
<td>Mg</td>
<td>48</td>
<td>MgCl₂(16), MgSO₄(32)</td>
</tr>
<tr>
<td>Fe</td>
<td>2</td>
<td>FeSO₄</td>
</tr>
<tr>
<td>Mn</td>
<td>1</td>
<td>MnSO₄</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>H₃BO₃</td>
</tr>
<tr>
<td>Zn</td>
<td>0.2</td>
<td>ZnSO₄</td>
</tr>
<tr>
<td>Cu</td>
<td>0.01</td>
<td>CuSO₄</td>
</tr>
<tr>
<td>Mo</td>
<td>0.005</td>
<td>(NH₄)₂MoO₄</td>
</tr>
</tbody>
</table>

気を行ない，pH は毎日午前9時に 0.1 N NaOH で 6.0
に調節した。移植後 50～120 時間後に水田等的に
培養液を 10 ml ずつ採取して，培養液中の NH₄-N と
NO₃-N 濃度をそれぞれネスラー法およびコニシ社の
イオンメーターを用いた標準添加法で測定した。なお,
別にブランクとして作物を移植せず，培養液，通気な
どは作物を移植した区と全く同様にしたポットおよび三
角フラスコを併設して，NH₄-N, NO₃-N 濃度測定用培養
液採取直前にブランク区の培養液減少量を測定し，減少
量相当の脱塩水（2.5 ml 容ポットでは 1 回につき
5～20
ml, 三角フラスコではほぼ 0）を各処理区に加え，作物の
水吸収による培養液減少量は補充せず，培養液を採取し
た。実験期間中のガラス室温度は 18～30℃ であった。

実験結果：第1図に代表的な吸収パターンを示した作物
を4つ選んで，時間の経過にともなう培養液中 NH₄-N と
NO₃-N 濃度の変動を示した。テンサイでは NH₄-N
に対して NO₃-N を著しく多く吸収し，キャベツでも
NO₃-N の方が多く吸収し，トウモロコシでは両者をは

第1図 NH₄-N および NO₃-N に対する選択吸収能
○→○ : NH₄-N ●→● : NO₃-N

NII-Electronic Library Service
全作物について、実験終了時における残存培養液量、残存培養液中濃度を分析用に採取した培養液のN量を考慮し、形態別のN吸収量を算出し、さらに全N吸収量中NH₄-NおよびNO₃-NのN吸収割合を算出した（第3表）。

<table>
<thead>
<tr>
<th>作作物</th>
<th>終了時の乾物重 (g/個体)</th>
<th>残存培養液量</th>
<th>残存培養液中NH₄-N濃度</th>
<th>NH₄-N吸収量</th>
<th>NH₃-N吸収量</th>
<th>全N吸収量</th>
<th>全N吸収量中割合 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ダイコン</td>
<td>5.6</td>
<td>1060</td>
<td>2.45</td>
<td>0.06</td>
<td>34.9</td>
<td>73.6</td>
<td>33</td>
</tr>
<tr>
<td>カラシナ</td>
<td>5.7</td>
<td>1080</td>
<td>2.60</td>
<td>0.39</td>
<td>34.3</td>
<td>68.6</td>
<td>33</td>
</tr>
<tr>
<td>ケツバタ</td>
<td>5.3</td>
<td>995</td>
<td>1.79</td>
<td>0.83</td>
<td>48.5</td>
<td>62.5</td>
<td>44</td>
</tr>
<tr>
<td>ケイサバ</td>
<td>9.9</td>
<td>810</td>
<td>1.94</td>
<td>0.24</td>
<td>51.4</td>
<td>71.4</td>
<td>42</td>
</tr>
<tr>
<td>ソプラ</td>
<td>3.5</td>
<td>1160</td>
<td>2.08</td>
<td>4.19</td>
<td>39.3</td>
<td>49.4</td>
<td>41</td>
</tr>
<tr>
<td>ニンジン</td>
<td>2.2</td>
<td>705</td>
<td>2.86</td>
<td>0.77</td>
<td>13.4</td>
<td>34.7</td>
<td>28</td>
</tr>
<tr>
<td>テンサイ</td>
<td>5.5</td>
<td>1180</td>
<td>2.74</td>
<td>0.85</td>
<td>27.9</td>
<td>69.6</td>
<td>29</td>
</tr>
<tr>
<td>キウリ</td>
<td>7.5</td>
<td>750</td>
<td>1.96</td>
<td>0.81</td>
<td>53.0</td>
<td>65.5</td>
<td>45</td>
</tr>
<tr>
<td>ダイズ</td>
<td>1.9</td>
<td>1230</td>
<td>1.64</td>
<td>1.25</td>
<td>45.6</td>
<td>52.5</td>
<td>46</td>
</tr>
<tr>
<td>アズキ</td>
<td>6.5</td>
<td>870</td>
<td>1.43</td>
<td>0.14</td>
<td>55.7</td>
<td>72.0</td>
<td>44</td>
</tr>
<tr>
<td>タマネギ</td>
<td>1.1</td>
<td>415</td>
<td>2.64</td>
<td>2.01</td>
<td>7.0</td>
<td>11.0</td>
<td>39</td>
</tr>
<tr>
<td>エネギ</td>
<td>0.4</td>
<td>470</td>
<td>2.78</td>
<td>2.49</td>
<td>4.1</td>
<td>6.1</td>
<td>41</td>
</tr>
<tr>
<td>コムギ</td>
<td>4.0</td>
<td>415</td>
<td>2.11</td>
<td>1.92</td>
<td>29.2</td>
<td>30.4</td>
<td>49</td>
</tr>
<tr>
<td>エンバック</td>
<td>3.5</td>
<td>450</td>
<td>0.56</td>
<td>1.17</td>
<td>38.3</td>
<td>43.4</td>
<td>53</td>
</tr>
<tr>
<td>イネ</td>
<td>3.8</td>
<td>570</td>
<td>0.79</td>
<td>2.55</td>
<td>35.7</td>
<td>20.9</td>
<td>63</td>
</tr>
<tr>
<td>トウモロコシ</td>
<td>10.5</td>
<td>1010</td>
<td>0.71</td>
<td>1.16</td>
<td>63.9</td>
<td>57.3</td>
<td>53</td>
</tr>
<tr>
<td>オオムギ</td>
<td>6.7</td>
<td>420</td>
<td>1.18</td>
<td>1.51</td>
<td>35.2</td>
<td>33.1</td>
<td>52</td>
</tr>
<tr>
<td>トマト</td>
<td>8.6</td>
<td>930</td>
<td>1.51</td>
<td>0.61</td>
<td>54.6</td>
<td>66.6</td>
<td>45</td>
</tr>
<tr>
<td>トウガラシ</td>
<td>3.7</td>
<td>580</td>
<td>0.94</td>
<td>0.32</td>
<td>34.4</td>
<td>39.7</td>
<td>46</td>
</tr>
<tr>
<td>パレタイオ</td>
<td>5.3</td>
<td>1155</td>
<td>0.94</td>
<td>2.74</td>
<td>58.5</td>
<td>61.9</td>
<td>49</td>
</tr>
<tr>
<td>レタス</td>
<td>5.8</td>
<td>865</td>
<td>0.56</td>
<td>2.19</td>
<td>67.1</td>
<td>46.8</td>
<td>59</td>
</tr>
</tbody>
</table>

*1 開始時の培養液量：1800 ml, ただし*2 印の作作物では1050 ml, *3 印の作作物では600 ml, 開始時の容器容量1100 ml, NH₄-N, NO₃-Nの量は培養液量1800 ml, 開始時の容器容量1100 ml, NO₃-Nを用いた。N吸収量は<（開始時のN量）−（終了時のN量）<（分析用に採取した培養液中N量）

実験結果: ダイコン、カラシナ、ハクサイ、アズキ、キウリ、ソバではNH₄-N区で栽培した作物の生育は良好であった。
第4表 実験IIの培養液組成

<table>
<thead>
<tr>
<th>要素</th>
<th>濃度 (ppm)</th>
<th>各要素の形態（当該要素 ppm）</th>
<th>各要素の形態（当該要素 ppm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>NH₄Cl(28), (NH₄)₂SO₄(56)</td>
<td>NH₄NO₃(84)</td>
<td>Ca(NO₃)₂(56), NaNO₃(28)</td>
</tr>
<tr>
<td>P</td>
<td>KH₂PO₄</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>K</td>
<td>KCl(22), K₂SO₄(43), KH₂PO₄(13)</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Na</td>
<td>NaCl(15), Na₂SO₄(31)</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Ca</td>
<td>CaCl₂(27), CaSO₄(53)</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Mg</td>
<td>MgCl₂(16), MgSO₄(32)</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Fe</td>
<td>FeSO₄</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Mn</td>
<td>MnSO₄</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>B</td>
<td>H₃BO₃</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Zn</td>
<td>ZnSO₄</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Cu</td>
<td>CuSO₄</td>
<td>同左</td>
<td>同左</td>
</tr>
<tr>
<td>Mo</td>
<td>(NH₄)₂MoO₄</td>
<td>同左</td>
<td>同左</td>
</tr>
</tbody>
</table>

第5表 平均乾物重、相対生長量および地上部N含有率

<table>
<thead>
<tr>
<th>作物名</th>
<th>平均乾物重（g/個体）</th>
<th>相対生長量</th>
<th>N含有率（対象物質）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ダイコン</td>
<td>1.22</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>カリシナ</td>
<td>3.09</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>キャベツ</td>
<td>2.90</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>ハクサイ</td>
<td>0.81</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>ニンジン</td>
<td>0.25</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>テンサイ</td>
<td>1.70</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>キウリ</td>
<td>1.57</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>ダイズ</td>
<td>1.07</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>アズキ</td>
<td>0.85</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>タマネギ</td>
<td>0.52</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>ネギ</td>
<td>0.20</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>コムギ</td>
<td>2.02</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>エンパラ</td>
<td>1.48</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>イネ</td>
<td>0.70</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>トウモロコシ</td>
<td>5.04</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>オオムギ</td>
<td>2.03</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>モモ</td>
<td>8.47</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>オウガラシ</td>
<td>0.47</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>パレリョ</td>
<td>0.99</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
<tr>
<td>レタス</td>
<td>0.53</td>
<td>NH₄-N 区</td>
<td>NH₄-N 区</td>
</tr>
</tbody>
</table>

平均 | 58 | 50 | 92 | 5.16 | 5.75 | 5.12 |

色が著しく、全体に小型であり、NH₄-N 区でも NO₃-N 区よりも生育があった。他の作物もNH₄-N 区においてレタス、イネ、オオムギ、ネギ、ニンジン以外の全作物で下位葉からの枯死、褐色斑点の発生、クロロシスの発生などの異常症状が発生した。

NO₃-N 区では、レタスで中下位葉にクロロシスが発生し、オオムギでも下位葉に褐色斑点が発生し、イネでは他区にくらべて軽弱に生育し、葉色も香く、レタスではNH₄-N 区にも軽度であるがNO₃-N 区と似た症状が現われた。

NH₄-N 区および NO₃-N 区のNH₄-N 区に対する相対生長量の全作物平均値はNH₄-N 区で小さく、NH₄-N 区で大きく、NO₃-N 区ではNH₄-N 区よりやや小さかった（第5表）。各作物についてみると、NH₄-N 区のNH₄-N 区に対する相対生長量はダイコン、アズキ、アスパで著しく小さく、カリンナ、キウリ、ダイズ、パレリョ、トマトでも小さく、イネ、ニンジン、オオムギ、ネギではNH₄-N 区と差がなく、レタスで大きかった。

一方、NO₃-N 区の相対生長量はレタス、イネ、ソバ、オオムギで小さく、カリンナ、アスパ、キウリ、テンサイで大きかった。

N 含有率の全作物平均値はNH₄-N 区で高く、
<table>
<thead>
<tr>
<th>作物名</th>
<th>NH₄-N (%)*</th>
<th>NO₃-N (%)*</th>
<th>NH₄-N (%)</th>
<th>NO₃-N (%)</th>
<th>NH₄-N (%)</th>
<th>NO₃-N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NH₄-N 区</td>
<td>NO₃-N 区</td>
<td>NH₄-N 区</td>
<td>NO₃-N 区</td>
<td>NH₄-N 区</td>
<td>NO₃-N 区</td>
</tr>
<tr>
<td>ダイコン</td>
<td>0.668</td>
<td>0.074</td>
<td>0.042</td>
<td>0.01</td>
<td>1.13</td>
<td>1.29</td>
</tr>
<tr>
<td>カラシナ</td>
<td>0.260</td>
<td>0.038</td>
<td>0.027</td>
<td>0.01</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>キャベツ</td>
<td>0.192</td>
<td>0.070</td>
<td>0.052</td>
<td>0.01</td>
<td>1.58</td>
<td>1.67</td>
</tr>
<tr>
<td>ハクサイ</td>
<td>0.592</td>
<td>0.060</td>
<td>0.044</td>
<td>0.02</td>
<td>1.81</td>
<td>1.98</td>
</tr>
<tr>
<td>ナス</td>
<td>0.480</td>
<td>0.050</td>
<td>0.032</td>
<td>0.07</td>
<td>0.90</td>
<td>1.32</td>
</tr>
<tr>
<td>ニンジン</td>
<td>0.112</td>
<td>0.050</td>
<td>0.028</td>
<td>0.02</td>
<td>1.44</td>
<td>1.71</td>
</tr>
<tr>
<td>テンサイ</td>
<td>0.128</td>
<td>0.044</td>
<td>0.027</td>
<td>0.01</td>
<td>0.84</td>
<td>0.92</td>
</tr>
<tr>
<td>キウリ</td>
<td>0.100</td>
<td>0.055</td>
<td>0.017</td>
<td>0.01</td>
<td>0.51</td>
<td>0.45</td>
</tr>
<tr>
<td>ダイズ</td>
<td>0.092</td>
<td>0.050</td>
<td>0.027</td>
<td>0.03</td>
<td>0.70</td>
<td>0.71</td>
</tr>
<tr>
<td>アズキ</td>
<td>0.192</td>
<td>0.058</td>
<td>0.032</td>
<td>0.02</td>
<td>0.38</td>
<td>0.39</td>
</tr>
<tr>
<td>ナマネギ</td>
<td>0.088</td>
<td>0.033</td>
<td>0.018</td>
<td>0.01</td>
<td>0.78</td>
<td>0.95</td>
</tr>
<tr>
<td>ネギ</td>
<td>0.092</td>
<td>0.039</td>
<td>0.034</td>
<td>0.01</td>
<td>0.90</td>
<td>1.28</td>
</tr>
<tr>
<td>コムギ</td>
<td>0.072</td>
<td>0.020</td>
<td>0.006</td>
<td>0.01</td>
<td>0.67</td>
<td>0.88</td>
</tr>
<tr>
<td>エンパク</td>
<td>0.084</td>
<td>0.034</td>
<td>0.018</td>
<td>0.01</td>
<td>0.97</td>
<td>1.82</td>
</tr>
<tr>
<td>イネ</td>
<td>0.108</td>
<td>0.036</td>
<td>0.019</td>
<td>trace</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>トウモロコシ</td>
<td>0.120</td>
<td>0.054</td>
<td>0.013</td>
<td>0.02</td>
<td>0.65</td>
<td>1.00</td>
</tr>
<tr>
<td>オオネギ</td>
<td>0.161</td>
<td>0.060</td>
<td>0.014</td>
<td>0.02</td>
<td>1.11</td>
<td>1.72</td>
</tr>
<tr>
<td>トマト</td>
<td>0.136</td>
<td>0.062</td>
<td>0.025</td>
<td>0.01</td>
<td>0.83</td>
<td>1.08</td>
</tr>
<tr>
<td>プドウ</td>
<td>0.052</td>
<td>0.033</td>
<td>0.015</td>
<td>0.01</td>
<td>0.65</td>
<td>0.80</td>
</tr>
<tr>
<td>ボリューム</td>
<td>0.100</td>
<td>0.088</td>
<td>0.007</td>
<td>0.04</td>
<td>1.32</td>
<td>1.43</td>
</tr>
<tr>
<td>シナダ</td>
<td>0.092</td>
<td>0.050</td>
<td>0.030</td>
<td>0.01</td>
<td>0.76</td>
<td>0.75</td>
</tr>
</tbody>
</table>

平均 | 0.188 | 0.050 | 0.025 | 0.02 | 0.90 | 1.11 |

* 対象物%

NH₄-N 区および NO₃-N 区で低く、NH₄-N 区と NO₃-N 区の間には差がなかった（第 5 表）。各作物の N 含有率を処理間で比較すると、多くの作物で NH₄-N 区で最も高く、NH₄-N 区で NH₄-N 区より明らかに低いのはキャベツ、キウリ、タマネギ、ネギ、バレインジであり、NO₃-N 区で NH₄-N NO₃-N 区より明らかに低いのはキウリ、ダイズ、イネ、トウガラシ、バレインジ、レタスであった。地上部の NH₄-N 含有率は全作物ともに NH₄-N 区で高く、ダイコン、ハクサイ、ソバ、カランサ、キャベツ、アズキで特に高かった（第 6 表）。NH₄-N NO₃-N 区では 0.1 % 以上の高含有率を示す作物はなかった。NH₄-N は NO₃-N 区でも 0.006～0.052 % 程度認められた。

NO₃-N 含有率は大部分の作物で NO₃-N 区で高かったが、多くの作物で NO₃-N 区と NH₄-N NO₃-N 区との間には差がなかった。NH₄-N 区の NO₃-N 含有率を種類間で比較すると、ハクサイ、エンパク、オオネギ、キャベツ、ニンジンで特に高く、キウリ、アズキ、イネで比較的低かった。NH₄-N 区においても少量の NO₃-N が地上部に存在した。

考察

移植後 24 日目の作物の NH₄-N NO₃-N 区に対する選択吸収能は大きく、高かったが、低かった。特に、やや低い別の培養液中で存在すると、ニンジン、テンサイ、ダイコン、カランサでは、NH₄-N 区に対するよりも NO₃-N 区に対する吸収能が著しく大きく、タマネギ、ネギ、ハクサイ、キャベツ、ソバ、アズキ、キウリ、トウガラシ、ダイズ、バレインジ、コムギ、オオネギ、エンパク、トウモロコシでは高インの、ネギにおいては NO₃-N 区に対する吸収能が著しく大きい（第 1 図、第 3 表）。これに対し、あると、アブラナ科およびユリ科の作物は NO₃-N 区に対する吸収能が大きくなり、マメ科およびオオ科の作物は両者に対する吸収能がほぼ同じか NO₃-N 区に対するそれが大きくなり、イネ科の作物は両者に対する吸収能がほぼ同じか NH₄-N 区に対するそれが大きい。

一方、6 me/l NH₄-N あるいは 6 me/l NO₃-N による 19 日目の生育を 3 me/l NH₄-N+3 me/l NO₃-N のそれと比較すると、大きな種差が存在する（第 5 表）。NH₄-N 区の NO₃-N 区に対する NH₄-N 区および NO₃-N 区の相対生存量を 80 以下、80 120、120 以上の 3 つに区切って、3 分区間の生存反応を分子的に測定した（第 2 図）。（1）アズキ、カランサ、キウリ、テンサイは N 源中 NO₃-N の割合が増加するにつれて相対生存量が大きくなり、（2）ハクサイ、ダイコン、キャベツ、アズキ、バレインジ、トマト、トウガラシ、タマネギは NO₃-N 区、NH₄-N+NO₃-N 区の両区で生育が同様に良好であったが、NH₄-N 区で劣り、（3）ソバ、エンパク、トウモロコシ、コムギは NH₄-N 区で高い NO₃-N 区および NO₃-N 区より生育が良好であり、（4）イネ、オオネギは NH₄-N 区、NH₄-N+NO₃-N 区の両区で生育が同様に良好で、NO₃-N 区で劣り、（5）レタスは N 源中 NH₄-N の割合が増加するにつれて生育が良好になり、（6）ニンジン、ネギなどの N 源でも良好に生育する作物であると考えられる。
生産良好な区

I. NO₃-N 区

工作名
アズキ、カンゾウ、キシリ、ラジサイ

II. NO₃-N 区、NH₄-N 区

ハクサイ、ダイコン、キャベツ、ダイズ、ブロッコリー、トマト、トウガラシ、タマネギ

III. NH₄-N 区

ソバ、エンパク、グモバワレン、コムギ

IV. NH₄-N 区、NH₃-N 区

イネ、オオワラ

V. NH₃-N 区

レタス

VI. NO₃-N 区、NH₄-N 区、NH₃-N 区

エンジン、ネギ

第2図 6ml/ NH₄-N、3ml/ NH₄-N十3ml/ NO₃-N、および6ml/ NO₃-Nに対する生育反応の作作物種間差

これを科別に見てもある種の傾向があり、アブラナ科およびメギ科の作作物はNO₃-N区あるいはNO₃-N区、NH₄-N区の両区で生育が良好であり、ナス科の作物はNO₃-N区、NH₄-N区の両区で良好であり、インネ科の作物はNH₄-N区あるいはNH₄-N、NH₃-N区の両区で生育が良好である。

実験Iにおける全N吸収量中NH₄-N吸収量の割合（第3表）を基準に、作物IIのNH₄-N区の相対生育を基準として両者の関係をとると、多くの作作物でNH₄-N区の相対生育量が大きい作作物ほどNH₄-N吸収割合が大きいという関係が認められる（第3図）。ただし、テンサイ（No.7）は相対生育率が基準にとられるに対し、標準区としたNH₄-N区でもNO₃-N区より生育が劣った（第3表）ために、この関係からはなるものであり、その生育を示したNO₃-N区を基準に相対生育量をとるならば基準の関係が示される。NO₃-Nに対する選択吸収能とNO₃-N区の相対生育量との関係についても、多くの作作物で同じような関係が認められる（第4図）。したがって、NH₄-NまたはNO₃-N培地で生育が良好な作作物では、それぞれのN源を選択的に吸収する傾向があると考えることができる。

NH₄-N区の相対生育量と地上部NH₄-N含有率との関係を見ると、NH₄-N区で生育が著しく劣る作作物はNH₄-N含有率が高い（第5図）。NH₄-N区で生育が著しく悪いダイコン、ラジサイ、ラジサイ、ハクサイ、ハクサイ、ハクサイでは、NH₄-Nに対する吸収能が比較的小さい（第3表）ことから、これらの作作物では吸収されたNH₄-Nに対する同化能が小さいために、NH₄-Nが体内に集積

第3図 3ml/ NH₄-N十3ml/ NO₃-N培養液からのNH₄-N選択吸収能とNH₄-N区の相対生育量との関係（番号は第1表の作作物番号）

第4図 3ml/ NH₄-N十3ml/ NO₃-N培養液からのNO₃-N選択吸収能とNO₃-N区の相対生育量との関係（番号は第1表の作作物番号）
NO₃⁻‐N 区で NO₃⁻‐N 含有率、N 含有率ともに低く（第 6 表、第 5 図、第 6 表、第 6 図）ことから、NO₃⁻‐N 区で生育が劣るのは、この区で N 吸収量が少ないことが原因の 1 つになっているとも考えられる。これ以外の作物では、NO₃⁻‐N 含有率が高い作物で相対生育量が低い傾向が認められが、相関は極めて弱く、このような傾向が存在するのは生育の旺盛な作物では NO₃⁻‐N 同化速度が速いためと理解される。

要約

24 日間標準培養液で培養した 21 種の作物を供試し、3 me/l NH₄⁺‐N + 3 me/l NO₃⁻‐N 培養液からの、NH₄⁺‐N および NO₃⁻‐N に対する選択吸収能を測定することにより、6 me/l NH₄⁺‐N, 6 me/l NO₃⁻‐N, および 3 me/l NH₄⁺‐N + 3 me/l NO₃⁻‐N を N 源とする培養液における生育反応を検討し、次の結果を得た。

1) NH₄⁺‐N に対する NO₃⁻‐N の吸収量は、ニンジン、テンサイ、ダイコン、カラシナでは著しく多く、タマネギ、ネギ、ハクサイ、キャベツ、ソバ、アズキ、キウリ、トマトでも多く、トウガラシ、ダイズ、ニンジン、コムギ、オアムギ、エンパク、トウモロコシでは両者をほぼ同量吸収し、レタス、イネでは NO₃⁻‐N に対して NH₄⁺‐N を著しく多く吸収した。

2) NH₄⁺‐N, NH₄⁺‐N, NO₃⁻‐N, NO₃⁻‐N 区の 3 区における生育を比較した場合、N 源ノ NO₃⁻‐N の割合が増加するにつれて生育が良好になる作物（アズキ、カラシナ、キウリ、テンサイ）、NO₃⁻‐N 区と NH₄⁺‐N, NO₃⁻‐N 区の両区で生育良好な作物（ハクサイ、ダイコン、キャベツ、ダイズ、ニンジン、トマト、トウガラシ、タマネギ）、NH₄⁺‐N, NO₃⁻‐N 区で生育良好な作物（ソバ、エンパク、トウモロコシ、コムギ）、NH₄⁺‐N 区と NH₄⁺‐N, NO₃⁻‐N 区の両区で生育良好な作物（イネ、オアムギ）、N 源ノ NO₃⁻‐N の割合が増加するにつれて生育が良好になる作物（レタス）、および全区で生育良好な作物（ニンジン、ネギ）が存在した。

3) NH₄⁺‐N 区で生育が良好な作物中には NO₃⁻‐N を選択的に吸収する作物が多く、NO₃⁻‐N 区で生育良好な作物中には NO₃⁻‐N を選択的に吸収する作物が多かった。

4) NH₄⁺‐N 区で生育が著しく劣った作物中には、この区で生育した場合に NH₄⁺‐N 含有率の高い作物が多かった。NO₃⁻‐N 区において生育が劣ったニンジン、レタスでは、この区で N 吸収量が少ないことも生育が劣る原因になっていることが推定された。

文献

1) 春日井新一郎：水耕法に関する研究、土肥誌, 13, 669～