筆者による国際的な分類体系

1. はじめに

黒ボク土は、水田土性が強い、土壌が酸性化し易い、腐植の堆積が著しい、保水性高く有効水分が多い、軽いようであるなどの特異的性質を示することが知られている。この性質は、土壌に含まれる非酸素粘土であるアロフェンに起因すると考えられてきた。ところが、Uchiyamaら1)は、アロフェンを主とした粘土乾物とするのでではなくスメクタイトを主体とする黒ボク土を世界で初めて報告した。その後、このような非アロフェン質黒ボク土は、我が国各地5)をはじめ世界各国7)にも広く分布することが報告され、発見以来30年を経てようやく黒ボク土の国際分類委員会（ICOMAND）でAndisolsのAlc群として位置づけられた6)。

我が国では、農耕地土壌と林地土壌の分類体系を統一し、国際的な分類体系に対比できるような統一的分類体系が構築され5)。この分類体系で黒ボク土は、過酸化水素処理前後のマンガン吸収の大小により、アロフェン質の黒ボク土と結晶質の黒ボク土（非アロフェン質黒ボク土に相当する）に区分されている。一方、我が国の農耕地土壌分類では、黒ボク土は主として土壌断面形態の違いにより分類され、作物栽培上最も重要な土壌のコポイド構成は殆ど配慮されていなかった10)。そこで農耕地土壌分類第3次改訂版11)では、新たに高次のカテゴリーレベルで交換酸度とを基準にアロフェン質黒ボク土と非アロフェン質黒ボク土を区分している。

筆者らはこれまで、我が国黒ボク土の非品質成分によるアロフェン質黒ボク土と非アロフェン質黒ボク土の類型区分基準を確立し両黒ボク土の分布と分布面積および土壌管理法を検討してきた12)18)。本報告では、我が国の代表的耕地黒ボク土の非品質成分による類型区分をもとに、我が国耕地黒ボク土の酸性状態と黒ボク土の分類における交換酸度の意義について検討した。

2. 供試土壌および実験方法

1) 供試土壌

供試土壌は、農林水産省が昭和51年から始めた土壌保全対策事業の環境基礎調査のなかで各都道府県の代表的黒ボク土として設されているものである。各農業試験場の土壌肥料調査部門に依頼し分与いただいた。これらの土壌は、農耕地土壌分類で黒ボク土、多湿黒ボク土、黒ボクタイ土のいずれかの土壌に分類され、776地点から採取した1279試料（作土：764試料、下層土：515試料）である。

2) 分析方法

酸性シュウ酸塩可溶アルミニウム、ケイ酸、鉄（AlO, SiO, FeO 2と略）およびアソシ酸可溶アルミニウム、鉄（Alp, FeP と略）の分析は、風乾調土を用い、土壌:溶液比は1:100で行った15)。凝集剤として0.4％ポリアクリルアミド水溶液を数滴加え遠心分離後、その上澄みについてケイ酸は、Weaverら18)の方法に準じて比色法によって、アルミニウムと鉄は原子吸光度法によって定量した。1M塩化カリウム抽出アルミニウムの測定は、Blakemoreら19)の方法に準じて行なった。なお、pH（H2O）、pH（KCl）、交換酸度と、塩基飽和度、全カリウム量、全塩素量、リン酸吸収係数、仮比重は、各都道府県の農業試験場で測定した値を使用していた。

3) 非品質成分によるアロフェン質黒ボク土と非アロフェン質黒ボク土の類型区分

アロフェン質黒ボク土と非アロフェン質黒ボク土の類型区分は、前報15)と同様にAlp/AlO比とSiO含量、粘土含量（あるいは土性）から行った。すなわちアロフェン質黒ボク土は、Alp/AlO<0.5の試料のうち、SiO≥5g kg^−1であるか、またはSiO<5g kg^−1でも粘土

* 弘前大学農学部総合科学科（036-8561 弘前市文京町3）
** 東北大学農学部附属農場（888-6711 宮城県玉造郡鳴子町川瀬河内）
1999年2月9日 受付・受理
日本土壌肥料科学雑誌 第70巻 第6号 p.754〜761 (1999)
3. 結果と考察

1) 耕作地黒ボク土の非晶質成分と酸性状態

第1表に供試した耕作地黒ボク土の試料数および非晶質成分による類型区分結果を示した。また、第2表にこれら耕作地黒ボク土の非晶質成分の平均値および標準偏差をそれぞれ示した。まず耕作地黒ボク土の活性アルミナ総量（Alo）を観ると、アロフェン質黒ボク土で32.1～39.4 g kg\(^{-1}\)、非アロフェン質黒ボク土で13.1～13.3 g kg\(^{-1}\)であった。アロフェン画分のケイ酸含量（Sio）は、アロフェン質黒ボク土で12.8～16.8 g kg\(^{-1}\)、非アロフェン質黒ボク土で1.9～2.1 g kg\(^{-1}\)であった。アロフェン質黒ボク土の活性アルミナ含量とアロフェン画分のケイ酸含量は、非アロフェン質黒ボク土に比べて著しく高い値であった。これに対して、腐植複合体アルミナ総量（Alop）は、アロフェン質黒ボク土で5.9 g kg\(^{-1}\)であるのに対し、非アロフェン質黒ボク土では、7.0～7.3 g kg\(^{-1}\)とやや高い値であった。非アロフェン質黒ボク土の活性アルミナ含量が相対的に少ない理由としては、主要粘土鉱物である2:1～2:1:1型中間種鉱物の層間にアルミナが固定されること、風成系や既存土壌の混入により黒ボク土の希釈が起きることあるいは全廃土壌の堆積が少なくテフラの風化により供給されるアルミナ量が少ないことなどが考えられる。13,14)

次に耕作地黒ボク土試料の酸性状態を第3表に示した。pH（H\(_2\)O）の平均値は、アロフェン質黒ボク土の作土および下層土でそれぞれ6.0, 5.9, 非アロフェン質黒ボク土の作土および下層土で5.8, 5.5であった。作土のpHは、両黒ボク土とも下層土より0.1～0.3高かった。非アロフェン質黒ボク土の下層土を除くとpH（H\(_2\)O）の平均値は、改良目標pH 6.0～6.5\(^{10}\)に近い値であった。

酸性度\(y_i\)の平均値は、アロフェン質黒ボク土の作土で6.0, 5.2, 1.2であった。

<table>
<thead>
<tr>
<th>表第1表</th>
<th>耕作地黒ボク土試料数と非晶質成分による類型区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>地方名</td>
<td>作土</td>
</tr>
<tr>
<td>北海道</td>
<td>74</td>
</tr>
<tr>
<td>東北</td>
<td>245</td>
</tr>
<tr>
<td>関東</td>
<td>87</td>
</tr>
<tr>
<td>中部</td>
<td>135</td>
</tr>
<tr>
<td>近畿</td>
<td>47</td>
</tr>
<tr>
<td>中国</td>
<td>36</td>
</tr>
<tr>
<td>四国</td>
<td>5</td>
</tr>
<tr>
<td>九州</td>
<td>135</td>
</tr>
<tr>
<td>合計</td>
<td>764</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表第2表</th>
<th>耕作地黒ボク土試料の非晶質成分</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌類型</td>
<td>層位</td>
</tr>
<tr>
<td>アロフェン質黒ボク土</td>
<td>作土</td>
</tr>
<tr>
<td></td>
<td>下層土</td>
</tr>
<tr>
<td>非アロフェン質黒ボク土</td>
<td>作土</td>
</tr>
<tr>
<td></td>
<td>下層土</td>
</tr>
</tbody>
</table>

() 内は標準偏差。
土で1.2、下層で1.8、非アロフェン質黒ボク土の作土で3.4、下層で9.2であり両黒ボク土に大きな違いが認められた。そこでより詳細に耕地黒ボク土試料の交換酸度、yを成分割合を層位ごとに示したのが第1図である。アロフェン質黒ボク土610試料のうち、582試料が交換酸度，6非満であった。しかしながら、作土9試料（3%）、下層土19試料（8%）、の交換酸度、6非満は交換酸度、53を非常に越える試料について（67試料）、1m塩化カリウム抽出アルミニウム（x）と交換酸度、yの関係を調べてみると、

\[y = 4.05x + 0.80 \ (r = 0.921^*\ast) \]

で示される正の相関が認められた。これに対して非アロフェン質黒ボク土では、作土212試料のうち、181試料（85%）が交換酸度、6非満の弱酸性に区分された。また、非アロフェン質黒ボク土の下層土では、105試料のうち58試料（55%）が交換酸度、6非満であった。黒ボク土の耕作化に伴う活性アルミニウムの変化はなお詳細な検討が必要である。

2）日本における強酸性土壌の分布

我が国では、低品位産地調査（昭和22～34年）、開拓地調査（昭和23～41年）、地域保全基本調査（昭和34～52年）といった全国規模での調査結果の蓄積がある21）。これらのなかで開拓地調査は、未耕地を対象とした貴重なかつ膨大な土壌情報を含んでいる22）。この開拓地調査では、交換酸度、6非満を中性、3～6を弱酸性、6～15を強酸性、30以上を超酸性土壌として区分している。国際分類のAndisolsのAlic亜群の基準である交換性アルミニウム2cmol(+)/kg-1は、未耕地黒ボク土の交換酸度、6非満を相当する23）。従って、国際分類でAlic亜群に分類される黒ボク土は、我が国の交換酸度、6非満による酸性度の強酸性、極強酸性、超酸性の黒ボク土に相当し、蓄積のある我が国の黒ボク土の研究結果を活用するのに極めて好都合である。このように、未耕地黒ボク土の場合、交換酸度、6非満を基準にすれば非晶質成分の分布を行わなくても黒ボク土の9割以上が正しくアロフェン質黒ボク土と非アロフェン質黒ボク土に識別される。つまり、我が国の非アロフェン質黒ボク土は、国際分類のAlic亜群とおおむね対応していることが示された24）。

このように未耕地黒ボク土では、交換酸度、6非満を基準にすれば非晶質成分の分布を行わなくても黒ボク土の9割以上が正しくアロフェン質黒ボク土と非アロフェン質黒ボク土に識別される。つまり、我が国の非アロフェン質黒ボク土は、国際分類のAlic亜群とおおむね対応していることが示された24）。

これに対して耕地黒ボク土を見ると、これまでに土壤情報システムを利用した耕地黒ボク土の第1層または第2層のどちらかの交換酸度、6非満を示す黒ボク土（強酸性耕地黒ボク土）の分布が検討されている25）。しかししながら黒ボク土畑畑では、栽培をする作物の耐酸性あるいはカルシウム要求性などを考慮した農業調査が一般に行われる考えられている。例えば、日本で試験した耕地黒ボク土は、非アロフェン質黒ボク土の75%が交換酸度、6非満の中性以上あるいは弱酸性に区分されていた（第1図参照）。また近年、アロフェン質黒ボク土における交換酸度、6の上昇が報告されているが26）、これは、施肥による肥料成分等の効果を与える酸根の蓄積、あるいは酸根の蓄積による耕作土壌の低下に伴う活性アルミニウムの一部が流出していることに起因するものと考えられる。このように耕地黒ボク土の交換酸度、6は、耕作土壌の影響を受け未耕地黒ボク土とは著しく異なる。そこで、我々が国全体を対象とした、開拓地土壌概要の未耕地黒ボク土から見た非アロフェン質黒ボク土の分布割合27）と土壌情報システムから見た強酸性耕地黒ボク土の分布割合を比較したのが第4表である。なお本報で供試した耕地黒ボク土の非晶質成分の分類区分と耕地黒ボク土の耕作化結果を比較すると、試料の調査地点が近接しているところではアロフェン質黒ボク土と非アロフェン質黒ボク土の耕作化結果がよく一致していることから第4表では両方の結果を併せて非アロフェン質黒ボク土の耕作化結果とした。

まず開拓地土壌概要の結果を見ると、アロフェン質黒ボク土の地点ご合計は、北海道地方、東北地方、関
第4表 我が国の強酸性黒ボク土の分布割合

<table>
<thead>
<tr>
<th>都道府県名</th>
<th>総数</th>
<th>非アロフエン質黒ボク土</th>
<th>非アロフエン質黒ボク土</th>
<th>土壌情報システムから見た強酸性耕地黒ボク土</th>
</tr>
</thead>
<tbody>
<tr>
<td>敦行道</td>
<td>683</td>
<td>238</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>青森</td>
<td>279</td>
<td>88</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>岩手</td>
<td>482</td>
<td>177</td>
<td>37</td>
<td>9</td>
</tr>
<tr>
<td>宮城</td>
<td>100</td>
<td>57</td>
<td>57</td>
<td>20</td>
</tr>
<tr>
<td>秋田</td>
<td>139</td>
<td>111</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>山形</td>
<td>128</td>
<td>113</td>
<td>88</td>
<td>44</td>
</tr>
<tr>
<td>福島</td>
<td>242</td>
<td>122</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>茨城</td>
<td>115</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>栃木</td>
<td>144</td>
<td>21</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>群馬</td>
<td>88</td>
<td>5</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>埼玉</td>
<td>57</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>千葉</td>
<td>101</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>東京</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>神奈川</td>
<td>73</td>
<td>3</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>江戸</td>
<td>103</td>
<td>21</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>長野</td>
<td>198</td>
<td>102</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>静岡</td>
<td>85</td>
<td>21</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>新潟</td>
<td>119</td>
<td>109</td>
<td>92</td>
<td>20</td>
</tr>
<tr>
<td>富山</td>
<td>51</td>
<td>48</td>
<td>94</td>
<td>20</td>
</tr>
<tr>
<td>石川</td>
<td>21</td>
<td>20</td>
<td>95</td>
<td>17</td>
</tr>
<tr>
<td>福井</td>
<td>36</td>
<td>35</td>
<td>97</td>
<td>20</td>
</tr>
<tr>
<td>岐阜</td>
<td>83</td>
<td>74</td>
<td>89</td>
<td>5</td>
</tr>
<tr>
<td>愛知</td>
<td>26</td>
<td>23</td>
<td>88</td>
<td>14</td>
</tr>
<tr>
<td>三重</td>
<td>59</td>
<td>56</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>高知</td>
<td>83</td>
<td>73</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>京都府</td>
<td>31</td>
<td>25</td>
<td>81</td>
<td>11</td>
</tr>
<tr>
<td>大阪府</td>
<td>10</td>
<td>9</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>兵庫</td>
<td>71</td>
<td>66</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>奈良</td>
<td>26</td>
<td>24</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>和歌山</td>
<td>17</td>
<td>12</td>
<td>71</td>
<td>-</td>
</tr>
<tr>
<td>鳥取</td>
<td>54</td>
<td>41</td>
<td>76</td>
<td>28</td>
</tr>
<tr>
<td>岡山</td>
<td>34</td>
<td>29</td>
<td>85</td>
<td>10</td>
</tr>
<tr>
<td>岡山</td>
<td>55</td>
<td>51</td>
<td>93</td>
<td>29</td>
</tr>
<tr>
<td>広島</td>
<td>72</td>
<td>62</td>
<td>86</td>
<td>41</td>
</tr>
<tr>
<td>山口</td>
<td>18</td>
<td>16</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>徳島</td>
<td>9</td>
<td>7</td>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>福岡</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>愛媛</td>
<td>42</td>
<td>26</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>高知</td>
<td>74</td>
<td>48</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>福岡</td>
<td>41</td>
<td>36</td>
<td>88</td>
<td>8</td>
</tr>
<tr>
<td>佐賀</td>
<td>37</td>
<td>33</td>
<td>89</td>
<td>-</td>
</tr>
<tr>
<td>長崎</td>
<td>122</td>
<td>108</td>
<td>89</td>
<td>20</td>
</tr>
<tr>
<td>熊本</td>
<td>168</td>
<td>80</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>大分</td>
<td>124</td>
<td>51</td>
<td>41</td>
<td>4</td>
</tr>
<tr>
<td>宮崎</td>
<td>209</td>
<td>25</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>鹿児島</td>
<td>212</td>
<td>39</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>沖縄</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>合計</td>
<td>4941</td>
<td>2318</td>
<td>47</td>
<td>13</td>
</tr>
</tbody>
</table>

*小原・松森[29]より引用。
東地方、九州地方の中央および南部で相対的に高い值であった。一方、非アロフエレン質黒ポト土の割合は、主として南東地方、中部地方、近畿地方、中国地方、四国地方、九州地方北部で高い値であった。この両黒ポト土の地点分布は、国際的にアロフエレン質黒ポト土および非アロフエレン質黒ポト土の分布とおおよそ一致していた。これに対して、土壌情報システムから見た強酸性耕作黒ポト土の結る果、強酸性土壌が優先するのは三重県のみであった。開拓地土壌概要の非アロフエレン質黒ポト土の地点割合は、強酸性耕作黒ポト土の割合を比較すると34県府県で3〜93ポイント高い値であった。また両調査の黒ポト土の分布パターンを比較すると、少なくとも北海道の十勝地方、岩手県南部から福島県、中部地方の日本海側、近畿地方、中国地方、四国地方および九州地方の北部に分布する非アロフエレン質黒ポト土は、既に酸性耕作が行われ強酸性を示していた。

なお詳細に見ると、群馬県、埼玉県、千葉県、東京都、神奈川県および静岡県では、開拓地土壌概要における非アロフエレン質黒ポト土の割合に比べて強酸性耕作黒ポト土の割合が逆に3〜16ポイント高い値であった。

我が国全体から見た強酸性黒ポト土の地点割合は、開拓地土壌概要の未耕地黒ポト土の場合47%であるのに対して、土壌情報システムの耕作地黒ポト土の場合13%（第1層のみでは10%）であった。このように耕作黒ポト土の交換酸度γを用いて非アロフエレン質黒ポト土を区分した場合、非晶質成分による非アロフエレン質黒ポト土の分布が不一致しない地域が多いことが明らかとなった。

3）耕作黒ポト土の交換酸度γによる類型区分

農耕作土壌分類第3次改訂版では、次表層の交換酸度γが5以上を示す黒ポト土を非アロフエレン質黒ポト土とした。Soil TaxonomyのAndisolsのAlic群類に対応するとしている。このグループに含まれる耕作黒ポト土は、交換性アルミニウム含量だけでなく、陽イオン交換基の性質、塩基飽和度、土壌反応など多くの重要な性質を異なることを特徴としている。そこで次報で供試した耕作黒ポト土について、次表層の交換酸度γが5を基準に区分した場合の土壌の理化学性を第5表

<table>
<thead>
<tr>
<th>第5表 次表層の交換酸度γが5より区分した場合の耕作黒ポト土試料の理化学性</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (H₂O)</td>
</tr>
<tr>
<td>交換酸度γ<5の試料</td>
</tr>
<tr>
<td>交換酸度γ>5の試料</td>
</tr>
</tbody>
</table>

() 内は標準偏差。

<table>
<thead>
<tr>
<th>第6表 次表層の交換酸度γが5より区分した場合の耕作黒ポト土試料の非晶質成分</th>
</tr>
</thead>
<tbody>
<tr>
<td>地点数</td>
</tr>
<tr>
<td>交換酸度γ<5の試料</td>
</tr>
<tr>
<td>交換酸度γ>5の試料</td>
</tr>
<tr>
<td>非アロフエレン質黒ポト土</td>
</tr>
</tbody>
</table>

() 内は標準偏差。
松山・三枝・工藤：我が国耕地黒ポト土の酸性状態と分類上の問題点

に示した。次表層の交換酸度y1が5未満の土壌では、pH(H$_2$O)は6.1±0.5、塩基飽和度は46±20％、リン酸吸収係数は1710±606 mg P$_2$O$_5$/100 g乾土であった。
一方、次表層の交換酸度y1が5以上の土壌では、pH(H$_2$O)は4.7±0.5、塩基飽和度は20±17％、リン酸吸収係数は1850±540 mg P$_2$O$_5$/100 g乾土であった。供試した耕地黒ポト土は、次表層の交換酸度y1=5を基準に用いると理化学的性質が相対的に異なる2つの土壌グループに見かけ上区分された。

次に、供試した耕地黒ポト土を次表層の交換酸度y1=5を基準に区分した場合の非晶質成分を第6表に示した。次表層の交換酸度y1が5未満の242試料のうち、202試料が非晶質成分からアフロベン室質黒ポト土、40試料が非アフロベン室質黒ポト土であった。交換酸度y1が5未満の土壌に含まれる非アフロベン室質黒ポト土は、SiO$_2$含量が2.0±1.9 g kg$^{-1}$、Alo$_2$含量が12.9±8.1 g kg$^{-1}$、Alp/Aloが0.51±0.19であった。これは第2表に示した耕地黒ポト土の非アフロベン室質黒ポト土の非晶質成分の平均値と比べると殆ど変わらない値であり、酸性塩基化された非アフロベン室質黒ポト土と考えられた。一方、次表層の交換酸度y1が5以上の土壌は、50試料のうち21試料がアフロベン室質黒ポト土、29試料が非アフロベン室質黒ポト土であった。交換酸度y1が5以上の土壌に含まれる非アフロベン室質黒ポト土は、SiO$_2$含量が13.4±9.3 g kg$^{-1}$、Alo$_2$含量が34.5±22.0 g kg$^{-1}$、Alp/Aloが0.21±0.11で酸性を示すアフロベン室質黒ポト土であった。

このように耕地黒ポト土の交換酸度y1を用いて非アフロベン室質黒ポト土を区分した場合、区分結果が土壌の地形を反映していないことが明らかとなった。

4）非アフロベン室質黒ポト土区分の意義

庄子らは、非アフロベン室質黒ポト土の共通的生成要因を母材、気候、植生、年代から推定し、非アフロベン室質黒ポト土の生成過程を検討した。また、Saigusa and Matsuyamaは、我が国のアフロベン室質黒ポト土と非アフロベン室質黒ポト土の分布パターンは、完新世始新世の堆積状況と密接に関係していることを示した。非アフロベン室質黒ポト土の土壌生成過程は、未だ明らかでない部分も多い。しかししながら、アフロベン室質黒ポト土と非アフロベン室質黒ポト土を比べると、活性アルミニウムの存在状態が異なる、主要粘土鉱物の酸的性質も異なると考えられる。非アフロベン室質黒ポト土は、土壌の塩基飽和度が低下すると作物にアルミニウムの過剰障害が発生する。畑作栽培においては、作物の養分吸収は下層土にも大きく依存している。下層土への根張りが制限される強酸性非アフロベン窒質黒ポト土では、作物の生育収量・窒素吸収量が著しく低下する。また、非アフロベン窒質黒ポト土のリン酸の吸着母体は、主として腐植物質体アルミニウムであり、アフロベン窒質黒ポト土では作物に対するリン酸の可溶性が相対的に低い。土壌のコンディションから見ると、非アフロベン窒質黒ポト土は相対的に塑性限界が低く、固着が限られているため、泥潤化や圧圧縮されやすい。このような特性から考えると、耕地土壌において非アフロベン窒質黒ポト土を分類する意義は大きいといえる。耕地土壌においても交換酸度y1は作物のアルミニウム過剰障害に対する土壌診断法として未耕作の場合と同様に極めて有効な指標である。しかしながら、耕地黒ポト土の交換酸度y1を非アフロベン窒質黒ポト土の分類基準として用いると結果的に多くの問題点を含んでいた。耕地土壌における非アフロベン窒質黒ポト土の区分は、土壌分類体系の中に非晶質成分による基準を導入し非アフロベン窒質黒ポト土をキーワードするのが望ましいと考える。

4. 要約

我が国の代表的耕地黒ポト土1279試料について行った非晶質成分による類型区分を基に、我が国耕地黒ポト土の酸性状態と黒ポト土分類における交換酸度y1の意義について検討した。

1）耕地黒ポト土のpH(H$_2$O)は、アフロベン窒質黒ポト土の作土および下層土それぞれ平均6.0±0.6、5.9±0.7、非アフロベン窒質黒ポト土の作土および下層土それぞれ平均5.8±0.6、5.5±0.8であった。従来未耕作において、アフロベン窒質黒ポト土は、酸性を示すと考えられてきたが、610試料のうち28試料は交換酸度y1=6を越える強酸性土壌であった。これに対して、未耕作で強酸性を示すと考えられてきた非アフロベン窒質黒ポト土は、耕地化に伴う酸性塩基化によって317試料のうち239試料が交換酸度y1=6未満の弱酸性に区分された。

2）地域化土壌調査における非アフロベン窒質黒ポト土の分析点は、土壌情報システムから見ると酸性耕地黒ポト土の割合を一定に保って、34道府県で3～93ポイント高値であった。

3）酸性耕地黒ポト土分類第3次改訂版に準じ、我が国耕地黒ポト土を次表層の交換酸度y1=5を基準に区分すると、アフロベン窒質黒ポト土でされる交換酸度y1=5未満の242試料のうち、40試料が非晶質成分から非アフロベン窒質黒ポト土であった。これに対して、非アフロベン窒質黒ポト土区分の意義について検討した。
日本土壌肥料学会雑誌 第 70 卷 第 6 号 (1999)

土壌保全調査事業全国協議会編: 日本の耕地土壌の実態と対策, p.3~55, 博友社, 東京 (1991)

農耕地土壌分類委員会: 農耕地土壤分類第 3 次改訂版, 農環研, 11, 4~8 (1995)

三枝正彦: 松山信彦・故 阿部篤郎: 東北地方におけるアロペン質黒ボク土と非アロペン質黒ボク土の分布, 同上, 64, 423~430 (1993)

杉山信彦・三枝正彦・故 阿部篤郎: 関東および中部地方におけるアロペン質黒ボク土と非アロペン質黒ボク土の分布, 同上, 65, 304~312 (1994)

岡本春夫: 砂畑土壌の改良と産業力維持, 農業技術, 34, 19~21 (1979)

三枝正彦・庄子貞彦: 伊藤輝男・本名俊彦: 黒ボク土における交換酸度 γ の再評価, 土肥誌, 63, 216~218 (1992)

三枝正彦・松山信彦・阿部篤郎: 開拓地土壤概要に基づく交換酸度 γ によるわが国黒ボク土の類型区分, 土肥誌, 63, 646~651 (1992)

吉田 春: 万ソリナイトおよびハライサイトの性質, 土肥誌, 41, 483~486 (1970)

吉田 春: カオリナイト, アロペンおよびイモコライトの酸性性格, 同上, 42, 329~332 (1971)

松山信彦・三枝正彦・工藤啓一: デンドロコーン幼植物のリノ酸に対する反応と黒ボク土におけるリノ酸の可溶性の評価, 日作東北支部報, 37, 57~58 (1994)

稲原 誠: 土壌コロイド組成の異なる黒ボク土のコンシステムシズと圧縮特性に関する比較研究, 東北大学修士論文 (1989)
Acidity of Japanese Cultivated Andosols and Significance of Exchange Acidity y_1 in Their Classification

Nobuhiko Matsuyama, Masahiko Saigusa* and Keiichi Kudo

(Fac. Agric. Life Sci., Hirosaki Univ., *Exp. Farm, Tohoku Univ.)

The acidity of Japanese cultivated Andosols and significance of exchange acidity y_1 in their classification were examined with special reference to soil colloidal composition: allophanic Andosols and non-allophanic Andosols.

The mean values of the soil pH for topsoil and subsoil in allophanic Andosols were 6.0 ± 0.6 and 5.9 ± 0.7, respectively, and for topsoil and subsoil in non-allophanic Andosols, 5.8 ± 0.6 and 5.5 ± 0.8, respectively. The soil pH of topsoil for both types of Andosols was higher than that for subsoil values, ranging from 0.1 to 0.3. Out of 610 cultivated allophanic Andosols, 28 soils with an exchange acidity of $y_1 \geq 6$ were found. On the other hand, out of 317 cultivated non-allophanic Andosols, 239 soils with an exchange acidity of $y_1 \leq 6$ were found.

Compared with the database of The Soil Information System, the ratio of strong acid soil to non-cultivated Andosols in each prefecture was relatively high, ranging from 3 to 93%. The liming of the plow layer soil was done well for both allophanic Andosols and non-allophanic Andosols.

The 292 cultivated Andosols were divided into two groups by exchange acidity y_1 in the subsurface soil following The Classification of Cultivated Soils (The 3rd approximation): Group 1 ($y_1 < 5$) and Group 2 ($y_1 \geq 5$).

In Group 1, there were 242 soils: 202 soils, or 83%, were allophanic Andosols; and 40 soils, or 17%, were non-allophanic Andosols. In Group 2, there were 50 soils: 21 soils, or 42%, were allophanic Andosols; and 29 soils, or 58%, were non-allophanic Andosols. The exchange acidity y_1 of the cultivated Andosols was not closely related to the clay mineral composition.

We conclude here that a criterion for non-allophanic Andosols in cultivated soils should reflect soil colloidal compositions using analytical date for amorphous materials.

Key words allophanic, cultivated Andosols, exchange acidity y_1, non-allophanic, soil classification