農業起源のアンモニアの発生・沈着実態と環境影響評価（資料

林健太郎1・神山和則1・實示戸雅之2・波多野隆介3・長田 隆2・本田善文4・阿部佳之2

1. 大気由来のアンモニア負荷概論

1) なぜアンモニアなのか

大気は微量のアンモニア（NH₃）を含む。その濃度は平均的に数 ppb（v/v）と亜酸化窒素（約 320 ppb）の約 100 分の 1 の低さである（1 ppb は 0.62 μg-N m⁻³ (0°C, 1013 hPa)）。しかし、NH₃ 濃度が低いのは、大気中の滞留時間が短い結果である。大気を介した循環量、すなわち、地球全体から発生し、大気を移動し、そして、大気から地球へと沈着する量は決して小さくない。更に、NH₃ の全地球発生量は窒素酸化物よりも多く、NH₃ は大気由来の窒素負荷の大部分を占める。NH₃ の 80% が人類起源であり、うち 80% が農業活動（家畜排せつ物および施肥された窒素肥料からの発生）に起因する（Galloway et al., 2004）。また、NH₃ は様々な環境影響に関与する。大気中では酸性ガスとの反応により二次粒子を形成し、健康影響や汚染物質の長距離輸送をもたらす。地表に沈着した後は、その硝化に伴う酸性化、硝化後の酸素性窒素の溶脱による水質汚染、可溶性窒素の増加による富栄養化、および、脱窒の促進などによる地球温暖化をもたらす（Hayashi and Yan, 2010）。NH₃ は大気由来の窒素負荷において最も重要な化学種といえよう。

2) アンモニアの発生

家畜排せつ物や農耕地からの NH₃ の発生は 2 つの平衡過程に支配される。1 つは土壤溶出などの液相中のアンモニアのイオン（NH₄⁺）と NH₃ の解離・再合平衡であり、もう 1 つは大気中イオンに基づく液相と気相間の NH₃ の分配平衡である。前者は液相 pH の影響を強く受け、後者は気相中の NH₃ 濃度の影響を強く受ける。NH₃ 振散に影響を及ぼす要因は、その濃度が強くなると、液相 pH を含む気相 pH＞液相 NH₃ 濃度＞温度である（Hayashi et al., 2008）。ただし、大気中の NH₃ 濃度が高い場合には NH₃ 振散は抑制される。

日本の畜産および農耕地からの NH₃ 発生に関する知見は少ない。つくば市の灰色低地土木田に尿素を施用した場合の振散率が全土壌窒素に対して 8.2% であった（Hayashi et al., 2008）。一方、つくば市の淡色黒ボク土畑および芽室町の黒ボク土畑で堆肥および化学肥料を施用した場合の振散は無視した（Hayashi et al., 2009a, 2009b）。

3) アンモニアの大気輸送

地表から発生した NH₃ は気流に乗って移動し、散布する。水の流れに伴う輸送と異なり、大気を介した輸送では集水域を越えた輸送が起こり、特に国境をも越えた長距離輸送となる。大気中の NH₃ の一部は硫酸や硝酸などの酸性酸物質と凝縮してアンモニア塩の微小粒子（pNH₃）となる。一方、pNH₃ の一部は蒸発して NH₃ に戻り、NH₃ と pNH₃ の大気濃度は相互に関係する（Hayashi and Yan, 2010）。NH₃ の平均濃度は、幌延町の森林で 0.26 μg-N m⁻³、芽室町の森林で 3.7 μg-N m⁻³、つくば市の木田および草でそれぞれ1.4 および 2.3 μg-N m⁻³ であった（Hayashi et al., 2009b, 2009c, 2009d）。

4) アンモニアの大気沈着

大気中の NH₃ および pNH₃ の一部は降水に取り込まれ、湿性沈着として地表にもたらされる。例えば、つくば市での NH₃⁺ の湿性沈着量は 2.8 kg-N ha⁻¹ yr⁻¹ であった。
主

4

(堆肥化)

発生係数（がで等約がしたと推定される）2006

わが

利

用

%がが

国民情報あ

が

NH3

発生係数

にあ

し

たと

考えられることから、ここでは乳量や草地面積等を考慮して

道府県別の発生原単位を算出した。

尿処理方法：畜種ごとに22区分（鶏は6区分）を設定し、農水省が実施した「環境保全型農業調査」の結果（農水省、2000）を利用して道府県ごとに各区分の割合を算出

家畜飼養頭数と耕地面積：1995年農業センサステーションから、神山ら（2003）の方法を用いて1kmメッシュ単位のデータを作成した。メッシュ単位のデータを用いることによりNH3発生量の地理的分布の解像度を高めることができる。一方、畜産系の発生源である畜角や処理施設の位置を特定できないという問題点があり、これを解決することは今後の課題である。

4）NH3発生量の推定

NH3発生量は畜産系と耕種系に分けて推定を行った。畜産系の発生係数は各メッシュにおいて畜種別に（1）式により計算し、各畜種を合計することで推定した。

[家畜飼養頭数] × [ふん尿発生原単位] × [EF] (1)

一方、耕種系は水田、畑（草地を除く、樹園地を含む）、草地について（2）式により計算し、各地区を合計することで推定した。

[面積] × [単位面積当たりN施肥量] × [EF] (2)

推定の結果、わが国の農業に由来するNH3発生量は、277.6Gg・N・y⁻¹であった。この中、耕種系が占める割合は2.6%で、畜産系のNH3発生量の占める割合が非常に高い。中でも鶏ふんに由来するNH3発生量の割合は高く、全発生量の約70%を占めていた。また、地域的な分布もみると、集約的畜産地帯においてその発生量が多いことが明らかになった。

5）おわりに

既往の成果や統計情報を用いて農業に由来するNH3発生量の地理的分布を示す地図が作成されたが、推定結果に対する不確実性は大きい。この要因として、計算の前提となるEFに関する調査事例が少ないこと、及び、活動量の情報がないことが挙げられる。これらの情報を収集するためには多くの労力が必要であるが、今後、これらの情報を蓄積していくことが望ましい。（神山和則）

3）集約農地帯における大気を介した地域内窒素循環

人口に比べて狭小な農耕地で集約的な作物生産と、輸入飼料に依存した乳肉生産を行うわが国農業において、窒素
収支は輸入過剰にあり，これを反映して単位耕地面積あたりの窒素収支からみた環境リスクは高く，とりわけ家畜畜数に対する飼料畑面積の割合が小さい本州地域ではその傾向が著しい。一方，我が国の畜産が欧米諸国と大きく異なる点がひとつとして，主要な家畜分別尿処理系が堆肥化にあることがあげられる。堆肥化では窒素成分の多くがアンモニアとして大気中に放出され，そのアンモニアは再び大地に舞い戻る。本稿ではアンモニアを介した窒素フローの実態を推定する。

1）アンモニア発生量推定値
原単位を用い我が国の畜産起源アンモニア拡散量を都道府県別に推定した（図1）（貢献者ら，2003）。全国土面積当たりの我が国平均値は9.6 kg−N ha−1である。20 kg以上
の県が7県存在する。15.4 kg−N ha−1の栃木県において，実態を観測した。

2）アンモニア実測例
（1）大気中アンモニア濃度
栃木県北部を連続酪農地帯において，比較的簡便なパッシブサンプラー法を用いて大気中アンモニア濃度を測定した（貢献者ら，2006a）。アンモニア濃度は酪農地帯中央部の観測地点において常時10 μg−N m−3以上（最大値66 μg−N m−3）を示すのに対し，対照山間部では0.7 μg−N m−3以下であった。また地点別平均濃度は直近の分別処理施設からの距離が1000 m以下の場合，距離が小さいほど高かった。

（2）湿式沈着量
上記の地点において2003年4月から2007年10月までの4年半の間，1ヶ月毎のパルクサンプルによる降雨量と窒素濃度を分析した（貢献者ら，2006a）。雨水の全窒素濃度は春に高く秋に低い傾向を示し，アンモニア態窒素，硝酸態窒素はもとより同様であった。雨水の窒素濃度の地点間差は大気中アンモニア濃度と対応した。4年間の平均全窒素濃度は酪農地帯中心部で1.3〜1.7 mg−N L−1であるのに対し対照山間部では0.5〜0.7 mg−N L−1である。採取雨水量は年間1710 mmで，この雨水による年間の全窒素湿式沈着量は酪農地帯中心部で18.5 kg−N ha−1に対し対照山間部では5.5 kg−N ha−1であった。酪農地帯中心部と対照山間部の沈着量の差約13 kg−N ha−1が家畜ふん尿窒素起源と考えられる。

3）乾性沈着量
酪農地帯の草原におけるアンモニアフラックスを濃度勾配法によって3年間連続測定した。その結果，草はアンモニアの吸収源としてはならず，年間沈着量は14〜18 g−N ha−1であった。これが乾性沈着量である。このほか，大気中アンモニア濃度からインフレーション法による乾性
沈着量の推定を行った。

3）大気を介した地域内窒素循環の推定
対象地域を8310 ha（うち耕地面積2161 ha）の集落に縫込んだ上で，これの集落の家畜頭数からふん尿窒素発生量を求めた（1650 t: 764 kg−N ha−1）。このうち，仮に3割がアンモニアとして大気中に放出されるとすれば，アンモニア発生量は495 t: 59 kg−N ha−1（△）となる。次に湿性
沈着量を108 t: 13 kg−N ha−1（①）と見積もり，さらに，乾性沈着量を133 t: 16 kg−N ha−1（③）とする。この値と，この地域のアンモニア発生量495 t（①）に対し，湿性
沈着量108 t（②）が22%，乾性沈着量133 t（③）が27%。合計49%という推定が成立すると，つまり地域で発生したアンモニアの半分がその地域内で舞い戻り，地域内循環をしていることである。

このような，家畜ふん尿窒素はその一部（少なくない割合）が大気を介して再び土地に降り注ぐ，集約酪農地帯においては，過剰な窒素は地域内で循環しながら，耕作林地を問わず窒素負荷を与えているのである（貢献者ら，2006b）。

4）流域レベルでの窒素沈着の影響解析
Raymond and Cole（1998），1954年から2001年にかけてミシシッピ川流域から，アルカリ度（HCO3−）の河川流出が平均12 kg Ca/h a/yrずつ上昇したことを示した。流域内のさまざまな小流域では，HCO3−は農地面積率と比較
関係にあり，農地が無い場合に30 kg Ca/h a/yr，100%農地の場合に110 kg Ca/h a/yrとなる有意の相互関係が認められている。彼らは，この原因として，農地に施された窒素肥料由来のNH4−の硝化により農地内に還元される炭酸カルシウムが溶解するためであると推察している。しか
し，酸による炭酸カルシウムの溶解は，酸の消費とCa2+の溶出とCO2を放出する反応であり，このままではHCO3−濃度は上昇しない。HCO3−濃度が上昇するためには，さらにCO2溶出による炭酸カルシウムの溶解や岩生成による脱凝固物の風化，あるいは脱水によるNO3−消
失が必要である。最近の研究では，脱水の証拠がいくつか得られてい
る。Eguchi et al.（2009）は，愛知県弥富川流域の低地土地区
域での研究では，地下水中のNO3−の消失とHCO3−の増加の比率が4:5.3であり，鈉酸呼吸によるNO3−消失とCO2/HCO3−生成の理想的割合である1:1にはほぼ一致していたことを示した。またNO3−中の中酸と酸素の安定
同位体比（δ15N，δ18O）が2:1の場合には脱窒が進行していて
も，多くの同一流路をたどる河川水，地下水のδ15N，

図1 畜産起源アンモニア発生量（kg−N ha−1 全国土年）
δ^18Oブロックから脱窒の証拠が挙げられている。
ここでは化学肥料や堆肥など人為的に投入される窒素による、流域レベルでのHCO₃⁻生成への影響を見た。
流域へ人為的に投入される窒素は、大气降下物、化学肥料、豆科植物の窒素固定、食料・飼料の輸入によりもっており、流域から人為的に持出される窒素は、化学肥料、堆肥の輸出と、人間・家畜棲み地形成される窒素である。投入と持出される窒素量の差は、人為起源の正味の窒素投入量（Net Nitrogen Input, NNI）と、これまでの研究から、NNIと川河へ流出する全窒素量（TN）には有意な正の相関関係が認められ、TN流出量はNNIの約30％と見積もられる。ただし、TNは河岸侵食などによる自然由来の土砂流出来を含むため、土地中を通る溶存態窒素（TDN）が、人為起源の窒素の持ち込みからの流出を反映していると考えるのが妥当である。

NNIと川河へ流出する窒素の残差は、流域における窒素の投入、持出しが長期間に渡って一定であれば、理論的には流域内に残るかガス状となって大気へ放出するかのいずれかとなる。したがって、NNIと川河へ流れる窒素（TDN）の残差（NNI-TDN）とHCO₃⁻の関係を見ることは、流域へ投入された窒素の風化への影響を知る上で意味のあることである。川河へのケイ酸塩流出量とHCO₃⁻流出量の関係は、風化におけるケイの由来で、風化した黒鉛がケイ酸塩鉱物であるかどうかを判断する情報となる。

ここでは、北海道の道東の標津川流域（679 km²）に含まれる5小流域における2年間の測定結果を例に示し、各小流域は農地面積割合が0から90%と異なる、NNIは、標津川流域を含む、中標津町の農業センサス、施肥標準を用いて計算し、化学肥料および堆肥施用量、収穫量、肥料購入量、出荷量は、流域面積、農地面積に応じて按分した。小流域の川河の出口において、自動採水器を用いて、降雨ごと、融雪期時の採水を行った。また月1回、平均時間の採水を行い、溶存有機態窒素（DON）、NO₃⁻、NH₄⁺、Na⁺、Ca²⁺、Mg²⁺、Cl⁻、SO₄²⁻、無機態窒素（IC）を分析した。測定は水位変動曲線を作成し、水位の連続測定値を水量に換算し、成分濃度を乗じて、成分流出量を算出した。基準態窒素（TDN）はDON、NO₃⁻、NH₄⁺の合計である。なお以下の記載では、成分はすべて年間流出量を示す。

統計学によれば、本流域では1990年以降、土地利用、農業、食料消費はほぼ一定となっており、人為的窒素の投入、窒素の持ち出しに対し、河川流出、大気放出は一定状態にあると仮定、できると考えた。モル換算のICとアルカリ度（K⁺+Na⁺+Ca²⁺+Mg²⁺）−（NO₃⁻+Cl⁻+SO₄²⁻）の間には、1：1に近い有意な正の相関がある。ICはHCO₃⁻を主体とする陰イオンとして、森林系が発生し、ICは主にHCO₃⁻を形成していることを示した。ICはNO₃⁻と有意な正の相関が見られ、モル換算でICはNO₃⁻の5倍大きかった。森林流域ではNO₃⁻はほとんど認められなかったが、高いICを示した。ICはSiと有意な正の相関を示したことから、ICの生成には、ケイ酸塩鉱物の風化に関わって生成したHCO₃⁻が強く関与していることが示唆された。

TDNはNNIに対して正の有意な相関関係を示し、その関係は、ほぼ正の傾き0.18のものであった。すなわち流域へ投入された窒素の約20％が流出し、80％が消去している可能性を示した。流域での消去量であるNNI−TDNは、森林流域ではほぼであり、農地流域では増加した。NNI−TDNに対してICは傾きが0.98の高い相関関係を示した。これらの関係から、森林流域で最も風化がICを生じさせていることが示唆された。IC/Siモル比は、森林化される鉱物のケイ酸鉱物の多寡を示し、これが1以下であれば、ケイ酸塩鉱物が主に風化し、1以上となると無機酸塩鉱物のような無機物の寄与が増加したことを示す指標の一つと考えられる。IC/Siモル比は、NNI−TDNに対して正の有意な相関を示し、森林流域ではIC/Siモル比は0.75とケイ酸塩鉱物が風化の主体であったが、農地が増加するにつれ、IC/Siは増加し1以上超えとなった。ケイ酸塩鉱物の風化は森林流域と同じように、この増加は、脱窒によるICの供給により生じたと考えられる。

以上のことから、流域への投入窒素の一部は川河へ流出するが、残差窒素は消去されNO₃⁻となり、その脱窒が河川へHCO₃⁻流出を増加させると推察される。

(波多野隆介)
濃度であるのに対し後者の液状物は約3000ppmの高濃度であった。

豚についても固液分離と混合の両方式があるが、汚水処理の経験やメタデータ問題から重複物処理系に処理の主体を置くケースが多い（同調査で抽出固形分の含水率71.0%、窒素5.3%（乾物当たり）、肉牛牛については多量の飲料とともに、ふん尿みで全て堆肥化（含水率65.8%、窒素1.7%（乾物当たり）、また鶏については飲料の有無がかかわらず、堆肥化処理によってふん用処理のすべてをまかす事案が多い（ウィンドウ鶏舎の採卵鶏で含水率63.5%、窒素5.8%（乾物当たり））。

3）排出されたふん尿の主な処理方法

日本のふん尿処理の主体は堆肥化であり、ふん尿中窒素の約41%が堆積型堆肥化で、強制通気型の堆肥化で25%が処理されていると推定される（平成9年農水省生産局調査）。次いで乾燥（太陽、火災乾燥）に続き、貯留や汚水処理などが行われている。嫌気性消化（メタン発酵）を除くふん尿処理システムでは処理段階で有機物分解に伴うアンモニア発生が観測される。

4）堆肥化処理からのアンモニア揮散

堆積型堆肥化処理からの環境負荷ガス発生をチャンバーを使い一定の通気量で換気を行い定期的観測した。主に4畜種のふん堆肥化期間中、アンモニアは堆肥化開始時に高く、低下するのに発生が顕著に増加した。また環境温度の上昇を伴う日間変動は、2ヶ月間発酵が継続され、発生係数は変化に異なり、堆積物の黒変化からそれぞれ44～91 g-N/kg・N、11～36 g-N/kg・Nと堆積混合物窒素の10%以下に止まる。肥育豚ふん堆肥化からの発生は236～254 g-N/kg・N、採卵鶏のふん堆肥化からの発生は268～366 g-N/kg・Nと堆積混合物窒素の2～3割がNH3-Nとして揮散する。

強制通気型堆肥化処理のうち、密閉・絶縁型堆肥化装置について実施設備の発生を評価する調査が始めている。比較的外気との接触が制限される本処理装置においても、発酵槽内の温度は30℃の間で変動している。この温度変化は完成堆肥の装置下部から取り出しに発酵槽内のふんの投入作業とも関係があった（豚ふんの投入間隔）。豚ふんの発酵処理過程には3施設で延べ0.9以上の周期率に平均162 g-N/kg・NのNH3-N揮散が観測されている。鶏ふんに関しては放牧上の問題から調査が2度に止まるが、1日間の期間の発酵中NH3-N発酵は数％と算定され、これはウリカメ生産細菌の尿酸分解活性が60℃以上の高温条件下で低下することが原因と考えられる（村上ら、2001）。

5）アンモニア揮散の抑制

堆肥化処理では酸性化の易分解性有機物の分解により窒素の無機化と栄養上昇が避けられない。良好な堆肥化処理を維持しつつ堆積物中のアンモニア生成を止めるのは困難と思われる、脱臭装置や効果的な脱臭装置が論文等で提案され、その多くが原理上もアンモニア捕集可能であることが示されている。ふん尿からは排せつ直後からアンモニア揮散が始まり、塩基に還元される間でもアンモニア発生は起こる。現実の発生源処理に広く適用可能で、発生変動に追従し、捕集手段を化学効果よりリサイクルできるシステム構築が求められている。

6）アンモニア揮散量の定量性・精度について

シナポジウム会場でアンモニア揮散量の測定精度に関する議論があり、堆肥中の分解を手がかりに揮散窒素量を推定する方法、蓄積周辺の窒素降下物の情報から算出する方法など実施を対象に測定した結果と、堆肥試験を行って測定した揮散量データの拡張性に関して質疑があった。それぞれの問題点を把握しデータを充実させていくため、同じ測定対象について共同研究を行い検証する必要性を感じた。
図2 吸引通気式堆肥化システムの概略

減される。
③アンモニア回収装置で、生ふん1tからNとして0.94kg相当のアンモニアが液肥として回収される。これは、堆肥原料中の全窒素量の90%以上に相当し、従来の圧送通気方式と比べて窒素の大気中への排出量を1/10程度に抑制できる。ただし、堆肥化反応（好気微生物の呼吸による有機物の分解反応）が順調に進むことが前提であり、原材料内部の通気性を確保するために見掛け密度が500～700kg/m³程度になるよう施設材を均一に混載・調製することが必要条件となる。

窒素の回収率は堆肥化の条件（原料、攪拌あるいは切り返しの方法、切り返し頻度等）で異なると推察され、窒素の放出を最小限に留めるための最適な条件について、今後、検討を要する。
④排熱利用については、生ふん1tから燈油23.8リットル分の熱量が発生すると試算されており、実証試験では、50～60℃の飽和水蒸気として1.8m³/minの流量で得られている。排熱利用はコスト低減の観点から同時に、化石燃料の消費量低減に期待できる。

溝乳牛10頭規模の酪農家で、別途、実証試験中であり、アンモニア回収装置の効率化・低コスト化や回収した液肥の流通・利用技術の開発、新たな排熱利用技術の開発を展開している。

4）回収液肥の活用例

肥料成分濃度の低い液肥は運搬コストが割高となるため流通に適さない。回収液肥の窒素濃度は6～8%であり、孤状蒸発のような広域流通は望めない。しかし、バイオガスプラント等由来の消化液の50～100倍の濃度であり、堆肥法の流動の可能性はある。栃木県大田原市で回収液肥の流動へは、室野作牧場の実証実験を実施したところ、室野作牧場の回収と同様580kg/10a（耕作を含む耕作地）の収量を得ており、回収液肥の利用の可能性が示されている。

5）おわりに

わが国では、年間9千万tの家畜飼料のうち、1.565tが飼室食であり、11万tが処理・保管過程で散乱すると見込まれている（いずれも国政）、家畜飼料の約9割が堆肥化されており、11万tが発酵過程の悪臭として散乱している。一方で、化学肥料として約48万tの窒素が消費されており、窒素汚染型の農業が展開している。環境に放出された窒素の動態は複雑であるが、ローカルあるいはグローバルな環境にインパクトがあるのは事実であり、当該技術が環境保全と生産性を両立する生産技術として定着するよう技術開発を進めているところである。

（本田善文・阿部佳之）

文献


貢献戸田雅之・池口厚男・神山和則・島田和宏・習野英雄・三島慎一郎・賀美康一2003、わが国農耕地における窒素負荷の都道府県別評価と改善シナリオ。土肥誌，74，467－474。

貢献戸田雅之・中島英一郎2003、農業系（畜産）と人間系（生活排水）
から発生するアンモニアのインパクト、資源循環対策。 資源循環対策。 39, 60-67。 
寶示戸雅之・松波寿弥・林健太郎・村野健太郎・森 昭憲 2006a。 
集約的畜産地帯における窒素沈着の実態。 日本土壌肥料学会、日本土壌肥料学会。 77,45-52。
寶示戸雅之・林健太郎・村野健太郎・森 昭憲 2006b。 集約的畜産地帯における大気中アンモニア濃度の実態。 土肥誌。 77,53-57。
神山和則・寶示戸雅之・佐々木寛幸・宮路広武。2003。国土数値情報を利用した農業統計データのメッシュ化。 土肥誌。 74,415-424。
農水省統計情報部。2000。平成8年度環境保全型農業調査畜産部門調査結果。127pp。
築城幹典・原田靖生。1997。家畜の排泄物量推定プログラム、システム農学。13,17-23。