Runway Capacity Model for Multiple Crossing Runways and Impact of Tactical Sequencing: Case Study of Haneda Airport in Japan

Terumitsu HIRATA \(^{a}\), Azumanosuke SHIMIZU \(^{b}\), Tetsuo YAI \(^{c}\)

\(^{a}\) Institute for Transport Policy Studies, 3-18-19 Toranomon, Minato-ku, Tokyo, 105-0001, Japan; E-mail: hirata@jterc.or.jp
\(^{b,c}\) Department of Built Environment, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
\(^{b}\) E-mail: shimmizu@wing.plala.or.jp
\(^{c}\) E-mail: tyai@enveng.titech.ac.jp

Abstract: The main purpose of the paper is to develop an analytical model for estimating runway capacity of Haneda airport in Tokyo which will have a new 4th runway in late 2010. The impact of the sequencing of the aircrafts’ departures/arrivals considering wake turbulence category was analyzed by using a more heuristic model which considers the feasibility of arrival spacing on final approach in practice. Haneda airport will eventually have two sets of open-parallel runways with crossing layout (16/34 L/R, 04/22 L/R). Consequently, the departure and arrival traffic will operate dependently with higher complexity than that of the current condition. By using the developed model, the necessary constraints on aircraft sequencing and spacing for attaining the runway capacity planned by the government and for expanding the capacity were analyzed.

Key Words: Runway capacity estimation, Haneda airport, Tactical sequencing

1. INTRODUCTION

The airport capacity in Tokyo metropolitan area has always been insufficient, especially in HANEDA Airport (HND) where the majority of domestic air passengers in Japan (65%) concentrate, thus leading to the extraordinarily large average aircraft size(60-70% of the aircrafts in HND are “Heavy” aircrafts in terms of the wake turbulence category). HND will open a new 4th runway in the latter part of October 2010 thereby increasing the runway capacity from around 300 thousand movements/year to 410 thousand. After this capacity expansion, some of the slots will be open to international scheduled flights although currently, all the slots are basically for domestic flights. However, the long-term or peak-hour capacity may still be insufficient even after this expansion because of the continuous increase in international demand such as in Asia and market changes such as higher frequency operation and denser networks with smaller-sized aircraft, including regional jets. Therefore, it is important to study the possibility of increasing the runway capacity after the HND expansion in 2010.

The purpose of this paper is primarily to develop an analytical model for estimating runway capacity for the airport which has multiple interdependent crossing runways, and also to analyze the impact of the sequencing of the departure/arrival aircrafts considering wake turbulence category with the developed model. The study is conducted on HND which will have a new 4th runway in late 2010 as a case study. HND will have two sets of open-parallel
runways with crossing layout (16/34 L/R, 04/22 L/R). Consequently, the departure and arrival traffic will operate dependently with higher complexity than the current condition.

Many academic researches (e.g., Hockaday and Kanafani, 1974; Newell, 1979; Gilbo, 1993; Janic, 2008) focused on the model for estimating runway capacity from a single runway to multiple runways including crossing runways. The analytical model of runway capacity for crossing runways is usually easy if the number of runways is two (as there is only one intersection). However, if one runway intersects dual runways, the situation becomes more complex (Newell, 1979). And to the best of our knowledge, no analytical model has been proposed for such runway systems where departures from parallel runways and arrivals at crossing runway are operated and the two intersections are both along the departure flight path like HND after the expansion. This may be so because this kind of runway operation is not usually adopted in other congested airports due to its inefficiency and that they usually have only parallel runways or have crossing runways as well that can be operated without strong interdependency (ex. Frankfurt, Amsterdam, JFK, LaGuardia). Some airports, such as Dulles (IAD) in US, have the runway configuration similar to HND but the wake turbulence separation rule is not so severe compared with HND. In contrast, as will be explained in the next section, HND will have to operate under the complicated configuration because HND has strong environmental constraints. Also, many airports have special constraints and therefore, must be considered individually (G.F. Newell (1979)).

2. CURRENT AND FUTURE RUNWAY OPERATIONS AND ROUTE RESTRICTION IN HANEDA

In HND, two of the three runways are currently operating simultaneously, but independently. One is only for landing while the other is only for departure (Segregated-mode). The departure/arrival airways of HND at low altitude are limited to the Tokyo-bay area due to noise problem (see Figure 1). After the expansion, Japanese Civil Aviation Bureau (JCAB) has planned to operate 3 or 4 runways simultaneously and but the airways will be still limited to the bay area (Figure 2). Each runway will be dedicated to aircrafts which fly to/from a certain direction (like to/from north or to/from south) in order to avoid conflict of aircrafts at the narrow terminal airspace in Tokyo. Furthermore, the world’s first simultaneous LDA (Localizer-Type Directional Aids) Approach will be adopted for simultaneous offset approach to parallel runways (south-wind configuration). By conducting real-time ATC simulation where actual air traffic controller joined, JCAB has concluded that the runway capacity of HND with the additional 4th runway is 40 landings and 40 take-offs /hour under the above-mentioned conditions.

3. DEVELOPMENT OF CAPACITY ESTIMATION MODEL FOR MULTIPLE CROSSING RUNWAYS –CASE OF HANEDA AIRPORT WITH THE 4th RUNWAY–

3.1 Capacity Estimation Modeling for Multiple Crossing Runways
3.1.1 Basic Concept
The existing analytical runway capacity models are based on the calculation of expected value of inter-event time between the leading and trailing aircrafts. This kind of calculation is easy for single crossing runways (i.e., one intersection). In this study, the capacity model for multiple crossing runways is developed by combining the capacity models for the two sets of
single crossing runways (C-D runway and A-D runway). Therefore, we first consider the inter-event time of all sequences (referred to as “System Occupancy Time (OT)”) for two sets of single crossing runways separately. And then we consider the method of combining the capacity models for the two sets of crossing runways with some assumptions. Finally the capacity for multiple crossing runways is calculated based on Monte-Carlo Simulation.

3.1.2 Occupancy Time for Single Crossing Runways
As shown in Figure 2, the operation in the south-wind configuration is more complicated than in the north-wind configuration because the arrival route to D-runway is intersecting with departure routes from both A- and C-runways (We call these two intersecting points “AC intersection” and “CD intersection” respectively: see Figure 2). Due to the limited space of the paper, the capacity in the south-wind configuration only is described.

As it is often the case with runway capacity models, the single occupancy rule is adopted for single crossing runways. However, in the case of HND, interpreting the occupancy rule will be different from the usual cases because the runways in HND do not physically intersect. We assume that only one aircraft occupies the system at the same time, and its “occupancy right” is transferred to the following aircraft at a certain point. For example, in the case of the C and
D runway system (CD system), this point is “when an aircraft departing from the C runway crosses the CD intersection” if the arrival to the D runway (Arr_D) follows the departure from C runway (Dep_C) or “when the landing of arrival aircraft to the D runway is assured” if Dep_C follows Arr_D. In other sequences cases, such as two consecutive Dep_C and two consecutive Arr_D, we use the existing method. With this concept, we calculate the occupancy time of the system (OT) of the middle aircraft among three consecutive aircrafts, which varies depending on the wake turbulence category and flight type (arrival/departure) of its preceding and succeeding aircrafts.

Let T_{ijk} be the OT of aircraft j between the preceding aircraft i and the succeeding aircraft k ($i,j,k=C$ or A)-runway, D-runway) which includes some buffer time for computing runway capacity, and t_{ijk} be the actual time of occupying the system. Similar to the existing research (Stephen et al. (1974)), the basic assumption is

$$t_{ijk} \sim N(\tilde{t}_{ijk}, \sigma^2).$$

(1)

Here, σ is the standard deviation of t_{ijk}. T_{ijk} is set such that the ATC separation rule is violated with a small probability p_v. Then,

$$T_{ijk} = \tilde{t}_{ijk} + \sigma \Phi^{-1}(1 - p_v)$$

(2)

where Φ^{-1} is the cumulative standard normal distribution function. In JCAB model, p_v is usually set to 0.005, and this study set the same value when observed data including the deviation σ is available. Otherwise, we calculated the OTs by using the safe-side parameters such as smaller flight speed among different type of aircrafts for converting minimum distance separation to the time separation.

In order to compare the model output with planned capacity by JCAB, we basically used the existing parameters which are usually assumed in CAB (1999) such as runway occupancy time and aircraft speed. However, since those parameters are mainly for a single runway, we had to consider additional parameter settings for multiple crossing runways based on Air Traffic Control Standard (CAB (1969), the local operational rules in HND, etc. Table 1 shows the basic parameters for computing OTs.

3.1.3 Examples of Occupancy Time (OT) for Single Crossing Runways: CD System

(i) OT of the case [Arr_D->Dep_C->Arr_D]: T_{DCD}

According to the concept of OT described in the previous section, the OT of the Dep_C between Arr_Ds, T_{DCD}, is the required time from take-off clearance to crossing CD intersection. T_{DCD} can be divided into three sections; (1) “take-off clearance” to “start of take-off rolling” (Response time): 15s”, (2) “start of take-off rolling” to “airborne (assuming 1800m point)”: 48s, and (3) “airborne” to “crossing CD intersection (2600m from airborne point)”: 32s. Time (2) includes safety buffer considering the speed variance, and time (3) is calculated by assuming the climbing speed of 160kt (minimum speed).

<table>
<thead>
<tr>
<th>Table 1. Basic parameters for capacity estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft</td>
</tr>
</tbody>
</table>

298
* Heavy : Medium = 0.7 : 0.3 (Wake turbulence category mix) (HND doesn’t have “Light” aircraft)

[2] Aircraft Speed
- [Departure] 160kt after airborne
- [Arrival] 180kt (9NM: from runway landing threshold), 160kt (5NM), 145kt/135kt (3NM, B777/B767/B737)
- [Missed approach] 160kt from SOC (start of climb) or 160kt from MAPt (missed approach point)

[3] Runway Occupancy Time (ROT)
- [Consecutive Take-off] 95s (15s (response time) + 35s (Start rolling ~ airborne) + 45s (required time for radar separation from following take-off aircraft))
- [Consecutive Landing] 115s (88s (average time from landing runway threshold to runway exit + buffer for its variance) + 27s (Additional buffer: 1NM flight time from runway threshold))

[4] ATC separation and other parameters
- [Separation between take-off and landing aircraft] (1) 2NM (3NM at 1 minute after airborne), (2) 2 minutes after heavy aircraft (when departure and arrival route is crossing above runway: landing to D-runway after take-off from C-runway in HND)
- [Landing assurance time] 25s (The time duration after passing landing threshold required by Tower controller for assuring that landing aircraft is never going to go-around)
- [Impact of engine thrust from take-off aircraft] 15s is assumed for assuring that there is no impact of engine thrust from take-off aircraft on the other aircraft behind take-off aircraft (Take-off from A-runway before Landing to B-runway in south-wind configuration)
- [Landing clearance] Landing clearance should be issued before reaching 1NM from landing runway threshold.

Figure 3. Required times for departure aircraft from A- and C-runway

(ii) OT of the case [Dep_C->Arr_D-> Dep_C]: \(T_{CDC} \)

\(T_{CDC} \) differs depending on the wake turbulence category of preceding Dep_C (Heavy (H) or Medium (M)). If it is Heavy, a 2-minute separation is required from the preceding Dep_C’s passing CD intersection until the succeeding Arr_D’s passing CD intersection (see Figure 4). This 2-minute can be converted to a certain distance by assuming approach speed, which differs among aircraft types. In practice, this distance will be used for the threshold that allows the Tower controller to issue Take-off Clearance to Dep_C prior to Arr_D. If the threshold can be set to one distance value for easing Tower controller work, it is necessary to calculate the distance by the fastest approach speed. Therefore, based on the speed of B777, it becomes 4.1NM from runway landing threshold. On the other hand, the slowest approach speed (B737) should be used for calculating the OT to include the safety buffer for variety of approach speeds of different aircraft types. The 4.1NM can be converted to 117s. \(T_{C(H)DC} \) becomes 142s by adding 25s (landing assurance time) (see Table 1) to 117s.
When the case preceding Dep_C is Medium, the minimum ATC separation becomes “Radar separation between take-off and landing aircraft” or 2NM (see Table 1). In other words, the separation should be kept more than 2NM when two aircrafts are closest (i.e., when the triangle formed by the three points, the two aircrafts and the CD intersection, becomes isosceles triangle if the two aircrafts fly at the same speed) (see Figure 5). In this condition, Arr_D (succeeding) should be further than 4.1NM from landing runway threshold when Dep_C (preceding) crosses CD intersection. This 4.1NM can be converted to 47s (by speed of B737). Then, $T_{C(M)DC}$ becomes 72s by adding 25s (landing assurance time) to 47s as well as $T_{C(H)DC}$.

If we assume the complete alternate operation of Dep_C and Arr_D, the hourly capacity of CD system, Cap_{CD}, can be calculated as follows:

$$CAP_{CD} = 2 \times 3600 \sum_{i=H,M} S_i (T_{DCD} + T_{C,DC})$$

$$\simeq 33 (\text{movements / h})$$

(3)

where, S_i is the share of Heavy and Medium aircraft ($H:M=0.7:0.3$).

Since Arr_D operation would also depend on Dep_A, the calculation of the runway capacity of total HND will be more complicated.
3.1.4 ATC Separation and Occupancy time (OT) of AD System

Basic concept of OT for AD system is essentially the same to that of CD system, but there is no wake turbulence separation between Dep_A and Arr_D according to the Japanese ATC standard (i.e., the flight route of Dep_A and Arr_D are not crossing above runway) and the Tower controller must see the impact of engine thrust from Dep_A on arrival aircraft at B-runway (Arr_B).

3.1.5 Occupancy Time (OT) for the Other Cases

OTs for other combinations of consecutive three aircrafts \(T_{ijk}\) are not described in detail, but the basic concept is the same. For example, \(T_{C(H)C(H)D}\) is the same as \(T_{DCD}\) mentioned above, and \(T_{D(H)C(H)}\) is the same as wake turbulence separation for consecutive departure of Heavy aircraft (120s, and 95s in the Medium departure case) (see Table 1). In the case of consecutive arrival at D-runway, the OT is the required time until the runway is vacated. For example, the \(T_{DD(M)D}\) is the same as Runway Occupancy Time of landing aircraft (115s) and \(T_{DD(H)D}\) is the same as wake turbulence separation for consecutive arrival of Heavy aircraft (120s). \(T_{C(H)DDD}\) can be calculated by summing 117s (time of flying 4.1NM mentioned in (b)(ii)) and 88s (Runway Occupancy time: see Table 1). Figure 6 shows the OTs for all other combinations of three consecutive aircrafts in AD and CD systems calculated in similar ways. The number of the combinations becomes 64 in each system since we distinguished them based on two wake turbulence category (H or M).

3.1.6 Capacity Estimation with Simultaneous Consideration of Both CD and AD System (three runways)

For calculating the total runway capacity in HND, we need to consider CD and AD system simultaneously since the two systems operate dependently through the arrival at D-runway (Arr_D). Here, it is important to consider how to control the separation of consecutive Arr_D efficiently to enable the take-off of Dep_A and Dep_C in the space of two consecutive Arr_D with minimum loss. As shown in Figure 6, OTs between CD and AD systems are different even in the same sequence. Therefore, if the separation of consecutive Arr_D is controlled optimally for Dep_A based on the OT of AD system, Dep_C may not necessarily be able to depart in that separation and vice versa (Figure 7 [B]). In these conditions, the capacity loss will be large in most of the cases, so we assumed that the number of departure from AD and CD system between consecutive Arr_Ds are basically the same in order to simplify the calculation (Figure 7 [A]). With this assumption, a problem of under-estimation of capacity might occur. (see “Sequence (4)” in Figure 7[A]). This will be discussed in the latter section.

In order to calculate the capacity of these three runways with the above-mentioned assumption, we focus the number of departures between consecutive arrivals. From this point of view, the operation of the runway subsystems (CD or AD system) consisting of a dependent pair of a landing runway and a departure runway can be expressed as a mixture of the following operation sequence types:

<table>
<thead>
<tr>
<th>Type of operation sequence</th>
<th># of Dep</th>
<th># of Arr</th>
<th>Occurrence Probability</th>
<th>Sum of OT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Arr), Arr</td>
<td>0</td>
<td>1</td>
<td>(P_a)</td>
<td>(T(0))</td>
</tr>
<tr>
<td>(Arr), Dep, Arr</td>
<td>1</td>
<td>1</td>
<td>(P_a \cdot P_d)</td>
<td>(T(1))</td>
</tr>
<tr>
<td>(Arr), Dep, Dep, Arr</td>
<td>2</td>
<td>1</td>
<td>(P_a \cdot P_d^2)</td>
<td>(T(2))</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(Arr), Dep, - - - - - - - , Dep, Arr</td>
<td>n</td>
<td>1</td>
<td>(P_a \cdot P_d^n)</td>
<td>(T(n))</td>
</tr>
</tbody>
</table>

where Arr is arrival, Dep is departure, (Arr) is the last arrival of preceding sequence, \(P_a\) and
P_d are the arrival and the departure probability, respectively.

The sum of OT of each type of operation sequence $T(n)$ consists of one or more occupancy times of the runway subsystem ($T_{ij,k}$). In the case of $T(n)$ of CD system, ($T_{CD}(n)$) is expressed as follows:

$$T_{CD}(n) = \begin{cases} T_{DCC} & (n = 0) \\ T_{DCD} + T_{CDC} & (n = 1) \\ T_{DCC} + (n-2)T_{CCC} + T_{CDD} + T_{CDC} & (n = 3, \ldots, \infty), \end{cases} (4)$$

Note: For simplicity, we ignored the subscripts indicating the wake turbulence categories where the first aircraft in the next operation sequence is assumed to be a departure (In case that the first aircraft is an arrival, the final term of each equation is changed to T_{DDD} ($n=0$), T_{CDD} ($n=1$), and T_{CDD} ($n=3$ or more), respectively).

Figure 6. Occupancy time (OT) of the all combination of three consecutive aircrafts in AD and CD system (OT of the 2nd aircraft)
Figure 7. Image of the assumption of the number of departure from A- and C-runway between consecutive Arr_Ds

Since the types of operation sequence shown above are mutually exclusive and exhaustive, we can calculate the arrival and departure capacity of this runway subsystem (case of CD system) per hour as follows:

$$\text{CAP}_{CD}(\text{arr}) = 3600 \frac{\sum_{n=0}^{\infty} n \cdot P_a \cdot P_{d}^n}{\sum_{n=0}^{\infty} 1 \cdot P_a \cdot P_{d}^n}$$

$$\text{CAP}_{CD}(\text{dep}) = 3600 \frac{\sum_{n=0}^{\infty} T(n) \cdot P_a \cdot P_{d}^n}{\sum_{n=0}^{\infty} n \cdot P_a \cdot P_{d}^n}$$

Here, it is assumed that every arrival interval is optimized to the $T(n)$ of this runway subsystem by one, and that there is continuous demand for landing and departure, a usual assumption in calculating ultimate capacity of runways.

Based on the assumption that the number of departure from AD and CD systems between consecutive Arr_D are the same, the inter-arrival time of Arr_D must be adjusted to the larger value among $T_{CD}(n)$ and $T_{AD}(n)$. As a result, the capacity of the runway system CAP_{CD+AD} ,which is a combination of CD and AD subsystems (i.e., a pair of independent departure runways and a landing runway dependent to the departure runways), is expressed as follows:
where $T_{CD}(n)$ and $T_{AD}(n)$ are the sum of OT for the type of operation sequences of runway subsystem CD and AD System, respectively.

3.2 Result of the Capacity Estimation by Monte Carlo Simulation for Random Sequencing

In order to estimate CAP_{CD+AD} analytically, we need to compute infinite number of combinations of $T_{CD}(n)$ and $T_{AD}(n)$. Therefore, we conducted a numerical simulation (Monte-Carlo Simulation) to get approximate solution of CAP_{CD+AD}, where a total of 10,000 aircrafts are served by the three runways. The sequence of arrival/departure and the category of each aircraft were determined randomly based on the arrival/departure ratio and Heavy/Medium ratio (H:M=0.7:0.3). To get the capacity curve, the simulation was conducted twenty times by changing the arrival/departure ratio. Then, we can get the approximate solution of the capacity by the expected value of the required time for serving one aircraft obtained by computing the cumulative larger value among $T_{CD}(n)$ and $T_{AD}(n)$ for all of the aircraft sequences generated.

The result of the simulated capacity curve of arrival and departure is shown in Figure 8. As the arrival ratio increases, the departure capacity decreases at higher rate than the increase in...
arrivals because the arrival to D-runway blocks departures from two runways (C and A runway). If we look at the planned capacity by JCAB (40 arrivals + 40 departures: even ratio of arrival/departure), the capacity is almost the same as the simulated capacity.

Here, the capacity tends to underestimate when departure ratio increases. This is because, even if the time gap between $T_{CD}(n)$ and $T_{AD}(n)$ is larger than the T_{ijk}, it cannot be used for additional departure due to the assumption that the number of departures from A- and C-runways for a given arrival interval are fixed to be the same (see Figure 7). The time gap becomes larger as departure ratio increases because of high probability of continuing departures. With rough estimation, where minimum time gap to be used for additional departure is assumed to be 95 seconds, it turned out that if arrival ratio is smaller than around 0.35, the total capacity loss of departure is less than 1% of the simulated capacity. Such a small loss can be ignored in practice, but the loss could be as high as 10% when arrival ratio is very small (0.05). Usually the arrival/departure ratio is almost even for congested airports where the slots are fully coordinated like HND. Therefore, the proposed capacity model can be adopted for such airports. However, we must find a way to solve this kind of underestimation problem in future studies.

3.3 Capacity Estimation for A-Priori Sequencing Considering Practical Arrival Spacing and the Impact of Sequencing Change on Capacity

3.3.1 A-Priori Sequencing Considering Practical Arrival Spacing

When we look at the capacity estimation model for random sequencing mentioned above from the actual ATC operation point of view, the separation between consecutive Arr_D in the final approach course must be controlled with flexibility by always thinking how many and what type (wake category) of departure aircraft will be released from A- and C-runways within the separation. In practice, the feasibility of such flexible controlling might not be high, at least in the current ATC technology condition. For capacity calculation, it is more practical to assume a “a priori sequencing of arrival and departure with fixed number of departure between consecutive Arr_Ds or with fixed separation of consecutive Arr_Ds”. In this case, we assumed that the sequencing of arrival and departure is a priori based on the arrival/departure mix. In other words, the number of Dep_C and Dep_A between consecutive Arr_Ds is assumed to follow a certain pattern. The simplest pattern is fixing that the number of Dep_C and Dep_A between consecutive Arr_Ds to a single number (e.g. two departures from each runway). Furthermore, to make the separation control in final approach more feasible, we fixed the separation to the maximum distance among possible required separations. Even if the number of departures between consecutive Arr_Ds is fixed to a single number, the required separation between consecutive Arr_Ds would be variable based on the aircraft type of Dep_C and Dep_A in terms of wake turbulence category. In the following analysis, we assumed this simplest and most feasible (easiest) operation approach for the impact of sequencing change on capacity.

3.3.2 Analysis of the runway operation for the planned capacity by JCAB and the impact of sequencing

As shown in Figure 2 (JCAB plan of HND capacity after expansion), Arr_D, Dep_C and Dep_A are planned to serve 12 landings/hour, 22 departure/hour and 18 departure/hour, respectively. Based on the planned capacity and the assumption (fixed separation of consecutive Arr_Ds), two departures from each of A- and C-runway between consecutive Arr_D are required. With this operation assumption and OTs shown in Figure 6, we analyzed
the runway operation for the capacity planned by JCAB.

The first case is for a mixture of aircraft types and the aircrafts are served on a “first-in, first-out” (FIFO) queue discipline. Figure 9(A) shows the runway operation and OTs in this case. (“CH” means Dep_C of Heavy aircraft and “AM” means Dep_A of Medium aircraft in the Figure). Since FIFO is assumed for a mixture of aircraft types, the maximum arrival separation in D-runway is 357s, that is in the case of two consecutive Heavy Dep_Cs. If this maximum time of 357s is fixed as separation interval, then the capacity of Arr_D would be 10 landings/hour and that of both Dep_C and Dep_A would be 20 departures/hour, which are totally less than the capacity of JCAB plan.

Figure 9. Image of runway operation and OTs (A) with fixed arrival separation and FIFO, (B) with tactical sequencing with some buffer slots for JCAB planned capacity, and (C) with tactical sequencing without buffer slots

The second case is analyzed when the aircrafts are served by optimized sequencing to some extent by minimizing large wake turbulence separation occurrence. As shown in Figure 6, the wake turbulence separation caused by Heavy Dep_C followed by Arr_D is relatively large. If the Dep_C followed by Arr_D is limited to Medium aircraft, the maximum arrival separation in D-runway can be reduced to 304s (the separation in the case of two consecutive Heavy Dep_As). Even with this tactical sequencing, the capacity is still a little bit lower than that of JCAB plan in terms of the capacity of Arr_D. However, planned capacity of JCAB can be attained by relaxing the fixed arrival separation, where one departure between two consecutive Arr_Ds is accepted once in an hour (this is not, of course, the only case to attain JCAB plan). Figure 9(B) shows the image of this operation. In practice, it is not easy for controllers to always limit the departure followed by Arr_D to Medium aircraft, especially in HND which have large number of Heavy aircrafts. However, to attain the JCAB planned
capacity, it is enough to release two departures from C-runway once in two cycles (one cycle means, for example, “Dep_C->Dep_C->Arr_D”). This means that there is enough buffering time that would allow controllers to release only one heavy aircraft if they do not have stand-by Medium aircrafts beside a departure runway.

If we can fully release the departures from C- and A-runway based on the tactical sequencing shown in Figure 9(B) and by allowing some consecutive landings to D-runway, the maximum capacity becomes 84 movements/hour (Figure 9(C)). Table 2 summarizes the capacity and the operational conditions of the three cases of operation.

Table 2. Summary of three cases of operation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arr_D</td>
<td>Landing at around 6 minutes interval</td>
<td>Landing at around 5 minutes interval (in one cycle, landing at around 4.5 minutes interval)</td>
<td>Landing at around 5 minutes interval (landing at around 3 minutes interval in one cycle, and two consecutive landings in three cycles)</td>
</tr>
<tr>
<td>Dep_A</td>
<td>Two departures between consecutive Arr_D (FIFO)</td>
<td>Basically, two departures between consecutive Arr_D (FIFO) (in two cycles, only one departure is allowed)</td>
<td>Basically, two departures between consecutive Arr_D (FIFO)</td>
</tr>
<tr>
<td>Dep_C</td>
<td>Two departures between consecutive Arr_D (FIFO)</td>
<td>Two departures between consecutive Arr_D (departure followed by Arr_D is limited to Medium aircraft) (in six cycles, only one departure is allowed)</td>
<td>Two departures between consecutive Arr_D (departure followed by Arr_D is limited to Medium aircraft)</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

In this study, we primarily developed an analytical model for estimating runway capacity for airports which have multiple crossing runways like HND after the expansion. The unique point of this modeling is that the interaction among three crossing runways is simultaneously considered and the practical capacity curve of the runway system in changing arrival/departure mix is computed by Monte-Carlo Simulation. We also analyzed the impact of the sequencing of the departure/arrival aircrafts considering wake turbulence category by using more heuristic model which takes into account practical feasibility of arrival spacing on final approach. The analysis results show that the runway capacity of HND after expansion will be less than JCAB planned capacity if controlling arrival and departure aircrafts is by FIFO and fixed arrival separation (this is close to current operation in HND). For attaining the JCAB planned capacity, it may be necessary to do tactical sequencing to minimize large wake turbulence separation occurrence to some extent. If we can fully release the departures from C- and A-runways by the tactical sequencing, the maximum capacity becomes 84 movements/hour. Currently, two runways are operating independently and in segregated
mode. After the expansion, by adding a 4th runway, HND will have multiple converging traffic of arrivals and departures and consequently, the runways will operate in a highly dependent way. After the expansion of HND, the sequencing strategy of arrival and departure aircrafts will become much more important for enhancing the runway capacity as shown in the analysis.

REFERENCES

