The Role of Metalinguistic Awareness in the Acquisition of L2 Pronunciation

Atsuko KASHIWAGI
Michael K. Snyder

Abstract

Inspired by a recent survey of high school students in Hokkaido, Japan, which showed that most students learn no phonetic alphabet in school, presumably because of recent Monbusho guidelines which promote “communicative” teaching methods in the English language classroom, and by their encounters with Japanese high school graduates who exhibit poor pronunciation of English, the authors undertook two studies to see if explicit instruction in phoneme production was useful in improving pronunciation. The studies, involving 1st and 2nd year students at a Japanese women’s university, showed that explicit instruction in a phonetic alphabet and in phoneme production does have a beneficial effect on the over-all intelligibility of pronunciation. Since one of the sample groups in the study improved from largely unintelligible to intelligible pronunciation presumably through the explicit instruction provided in the course of the study, the authors argue that such instruction should be incorporated into communicative methodology.

1. Background

Many of us teaching English at college level in Japan are no longer surprised when students innocently ask, “What are phonetic symbols?” A survey conducted by Etsuyuki Usuda (2000), a high school teacher in Hokkaido, gives us a very clear picture of what we are currently faced with. Usuda found out that of the 194 students at his school who answered his survey, 59.3% of them had not learned phonetic symbols in junior high school as opposed to 25.3% who had. 57.2% of the same students answered no phonetic symbols had ever been taught in high school.
Lack of emphasis on phonetic transcription in the English classroom indicates de-emphasis of explicit instruction in discrete phonemes. This is a direct result of the changing priorities of the educational guidelines issued by the Ministry of Education (now known as the Ministry of Education, Culture, Sports, Science and Technology). The most recent guidelines issued in 1999 for high school most clearly reflect the shift toward a more communicative curriculum. They state that developing “practical communication skills” is the primary goal of English instruction (Monbusho, 1999: p.119). They further suggest that “analysis and explanation of the language be kept to a bare minimum” and that “more focus be placed on actually using the language” (Monbusho, 1999: p.120). In accordance with this shift towards a more communicative approach, teaching of phonetic symbols is now an optional classroom activity. Instead of just teaching segmental sounds, teachers are now expected to have a more balanced approach to pronunciation, paying attention also to suprasegmental features such as stress, intonation and rhythm, which are at least as important as the segmentals in conveying meaning.

In principle, Monbusho’s approach faithfully reflects what most teaching professionals now agree on: i.e., we have to move away from the monotonous teaching of discrete language units towards a more communicative learning environment. However, a simple question still haunts many classroom teachers: Can pronunciation be taught effectively without explicit instruction in discrete phonemes or the use of phonetic transcription? Can learners implicitly learn L2 phonology if given sufficient aural input? In a study the authors conducted at the beginning of April in 2003, which evaluated 78 Japanese college freshmen on their oral reading of a short passage, only one student was good enough to be rated “reasonably intelligible.” We have no comparable data that show the L2 phonology level of Japanese college students in the past, but at least one thing is clear. These students, who were taught under the current Monbusho guidelines, did not learn to speak intelligibly.

Form-focused instruction is now receiving renewed interest in the teaching profession, and the emerging consensus is that explicit instruction and the resulting metalinguistic awareness on learners’ part do promote learning (Ellis, 2001; Schmidt, 1995). If the question is whether adult learners can develop an advanced understanding of an L2 syntax without receiving explicit
The Role of Metalinguistic Awareness in the Acquisition of L2 Pronunciation

instruction in syntactical forms, the answer to many will probably be a definite no. However, when it comes to pronunciation, the teaching of abstract rules not only seems to lose its appeal, but is often shunned as something not desirable.

What is complicating the discussions here and giving pronunciation a kind of “special status” is the particular difficulty which adults face in attaining native-like proficiency in pronunciation. Whether it is because of the maturation of the brain, psychomotor constraints, or social or psychological factors, a common observation is that adults invariably have a “foreign” accent regardless of their mastery of lexis, syntax and morphology (Avery and Ehrlich, 1992). Researchers such as Scovel go so far as to say that adults cannot achieve perfect or target-like pronunciation in a second language (Scovel, 1969). Even though attaining perfect native-like pronunciation must not be the goal of any pronunciation class, the questions about whether pronunciation can be taught at all in the classroom lingered, and led many programs to pay less attention to pronunciation or drop it all together (Morley, 1991).

The advent of the communicative approach also helped the teaching of pronunciation fall out of fashion. The teaching procedures often associated with pronunciation, lecturing on phonetic rules, “listen and imitate” drills and decontextualized practice, were simply not compatible with the communicative approach. It was felt that too much focus on correct pronunciation would inhibit students from speaking up and teachers putting emphasis on pronunciation were not considered progressive. Doubts about the teachability of pronunciation and the declining popularity of pronunciation work resulted in a lack of interest in research, especially into the positive or negative effects of specific teaching procedures. Little is still really known about what kind of teaching actually contributes to L2 phonological development and how adult learners actually develop L2 phonology (Pennington and Richards, 1986).

One of the few studies that give us some insight into pronunciation acquisition is the one conducted by Sheldon and Strange (1982). Studying the relationship between Japanese learners’ ability to perceive /r/ and /l/ and their ability to produce the two consonants correctly, they found that perception does not necessarily precede production. By questioning the popular assumption that learners must first be able to hear the sounds correctly before producing them,
they also cast a serious doubt on the "listen and imitate" approach which had long been intuitively appealing to teachers. Derwing, Munro and Wiebe (1998) evaluated the effects of three types of instruction: segmental accuracy, general speaking habits and prosodic factors, and no specific pronunciation instruction. They found that the first two types resulted in significant improvement in pronunciation and concluded that explicit instruction both in segmental and suprasegmental features contributed to learners' phonological development. The research done by Macdonald, Yule and Powers (1994) is less conclusive. They compared the pronunciation of Chinese students who were grouped into four different conditions: traditional drilling activities, self-study, interactive activities and no teaching intervention, and found the results favored no particular teaching procedure.

2. Purposes and Research Questions

A brief review of the literature shows that the decision by Monbusho not to require the teaching of phonetic symbols under the banner of communicative teaching is, in fact, not based on any solid empirical data. Monbusho's approach does not seem to reflect learners' needs, either. In the survey conducted by Usuda (2000), 77.3% of the students felt that phonetic symbols should be taught at school, and 53.6% of them felt that a knowledge of phonetic symbols is essential when learning pronunciation on their own. There is an urgent need for reliable data on how Japanese learners past puberty actually develop their L2 pronunciation, and specifically whether metalinguistic awareness of L2 phonetic rules helps learners improve their performance.

Two studies (Study I and Study II) were conducted in order to evaluate whether explicit knowledge of English segmental sounds is conducive to overall improvement in learners' pronunciation. The studies also tested the common assumption that the best way to learn correct pronunciation is through listening, not by learning abstract knowledge. This assumption, held intuitively by many, holds that learners must first develop an "ear" for English sounds for them to imitate them. This assumption serves to play down the importance of phonetic transcription, and leads teachers to think that learners will just "pick up" the correct pronunciation if given good
aural models.

3. The Studies

3.1 Participants

A total of 39 second-year Japanese students in the Department of English Language and Literature at Showa Women’s Junior College in Tokyo participated in Study I conducted in January of 2003. Study II was conducted between April and July of 2003, in which a total of 75 Japanese students participated; 10 of them were first-year students in the Department of English Language and Literature at Showa Women’s Junior College and 65 were first-year students in the Department of Contemporary Liberal Arts at Showa Women’s University. All of the participants had gone through six years of English instruction in the regular Japanese school system. The 39 participants in Study I had experienced a three-and-a-half-month study program in the United States between September and December of 2001. None of the participants in Study II had stayed overseas for extensive periods of time.

3.2 Procedures

In Study I, the participants were divided into two groups and each group had a 13-week pronunciation course taught by the same instructor. In class, they received extensive pronunciation instruction including explicit explanation of the articulatory positions of both English consonants and vowels, practice both in drill-type activities and in more communicative interactions, listening exercises, and self-monitoring activities. The course also had a heavy focus on suprasegmental aspects, which were explained explicitly and practiced extensively. Phonetic symbols were taught explicitly and used extensively in the course to reinforce learning. *Pronunciation Plus* (Hewings & Goldstein, 1998) was chosen as the course material, heavily supplemented by *Mother Goose Jazz Chants* (Graham, 1994).

For the purpose of the study, five English vowels, /æ/ /ə/ /ɜ/ /ɔ:/ /ou/, were selected which present particular difficulty to Japanese learners. At the end of the 13 weeks, the participants were
evaluated on the following four areas.

1) Knowledge: This was tested by means of a 29 item multiple choice test in which the participants were asked about the correct articulatory positions of the five vowels represented in phonetic symbols. They also identified the vowels in common English words by selecting the appropriate phonetic symbols. Many of the vowels in this section of the test also appeared in Passage Reading.

2) Listening: The participants were tested whether they could aurally distinguish three minimal pairs of vowels -- /æ/ - /a/, /a/ - /a/, /ɔ:/ - /ou/ -- in an 85 item test. For Study II, the number of items was increased to 120 and the vowels were read more slowly in an attempt to make this part of the test less difficult.

3) Vowel Reading: The participants were asked to read five different sets of each of the three minimal pairs mentioned above. Their reading was recorded and rated by three independent raters. The participants received points when they could correctly produce both vowels in a given minimal pair. Prior to their reading, a native speaker model was played; the three minimal pairs were also presented in phonetic symbols.

4) Passage Reading: For this part of the test, the participants read a short passage aloud (Appendix 1). Before reading the passage, they listened to a native speaker model; they were also given time to study the text and look up phonetic transcription of words in a dictionary if necessary. The reading was recorded and rated by three independent raters on a scale of 1 to 7, with 1 indicating unintelligibility and 7 indicating near-native speech (Appendix 2).

Study II was conducted to obtain pre- and post-treatment data, which were not available in Study I. It also specifically investigated the correlation between Passage Reading, and Knowledge and Listening, with a larger group of learners. The 75 participants were divided into four groups and each group went through a 13-week pronunciation course similar to that of the first study, taught by the same instructor. The same testing procedures as the first study were carried out both in April and in July.
3.3 Method of Analysis

In both Study I and II, the correlations between the parts of the test were calculated, using Pearson’s correlation coefficients. The results of the pre-test and post-test in Study II were compared using the paired samples t-test to see if any of the gains were significant. Reliability estimates for the multiple-question sections of the test (Knowledge and Listening) were calculated using the Spearman-Brown Split-Half coefficients. Inter-rater reliability estimates between the three raters for Vowel Reading and Passage Reading were calculated using Cronbach Alpha. All the statistical analyses were performed with Statistical Product and Service Solutions Windows 7.5 Version (SPSS inc., 1996)

4. Results and Discussion

4.1 Study 1

Descriptive statistics and a correlation matrix from Study 1 are presented in Table 1.

<table>
<thead>
<tr>
<th>Measure (total possible)</th>
<th>Mean SD</th>
<th>Reliability</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Knowledge (29)</td>
<td>17.18</td>
<td>.894</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Listening (85)</td>
<td>52.82</td>
<td>.933</td>
<td>.217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Vowel Reading (30)</td>
<td>22.90</td>
<td>.821</td>
<td>.401*</td>
<td>.296</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Passage Reading (evaluated on 1-7 scale)</td>
<td>3.29</td>
<td>.819</td>
<td>.290</td>
<td>.181</td>
<td>.334*</td>
<td></td>
</tr>
</tbody>
</table>

N = 39

* = p < .05; ** = p < .01

A significant correlation was observed between Knowledge and Vowel Reading ($r = .401*$, $p < .05$), suggesting that metalinguistic knowledge about phonemes contributes to a better production of discrete vowels. No correlation was found between Listening and Vowel Reading, supporting the claim by Sheldon and Strange (1982) that learners’ ability to perceive sounds correctly does not necessarily precede production. A closer look at the data gives us further evidence for their claim; there were 7 participants who were able to produce perfectly five sets of
the /æ/ - /a/ pair, but none of them had a perfect score in the listening test which tested their perception of the same minimal pairs. Studying the other two minimal pairs, /a/ - /ʌ/ and /ɔː:/ - /ou/, also leads to the same result. Some of the participants were able to produce the pairs perfectly, but their listening was less than perfect (See Table 2).

The listening scores also varied widely among the participants, hinting at large individual differences in how they learn to produce English sounds; some of them may have a good “ear,” and use their listening abilities to mimic the sounds and others may have to rely more on their conscious knowledge of the phonemes to arrive at the correct pronunciation. Lightbown and Spada conclude that the past research in learner differences “suggests that different learners approach a task with a different set of skills and preferred strategies” (1993). The data here also lend support to their claim.

Table 2 Listening scores of high performers in Vowel Reading

<table>
<thead>
<tr>
<th></th>
<th>/æ/ - /a/</th>
<th>/a/ - /ʌ/</th>
<th>/ɔː:/ - /ou/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score (%)</td>
<td>Student No.</td>
<td>Score (%)</td>
</tr>
<tr>
<td>5</td>
<td>88.6</td>
<td>6</td>
<td>51.4</td>
</tr>
<tr>
<td>6</td>
<td>68.6</td>
<td>11</td>
<td>37.1</td>
</tr>
<tr>
<td>21</td>
<td>94.3</td>
<td>22</td>
<td>31.4</td>
</tr>
<tr>
<td>23</td>
<td>97.1</td>
<td>29</td>
<td>62.6</td>
</tr>
<tr>
<td>25</td>
<td>97.1</td>
<td>30</td>
<td>34.3</td>
</tr>
<tr>
<td>29</td>
<td>62.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>48.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There is a significant correlation between Vowel Reading and Passage Reading ($r = .334^*, p < .05$), suggesting that correct production of discrete vowel sounds can lead to more intelligible pronunciation on the whole. A rather weak correlation should be expected, as factors other than vowel sounds influence the overall impression of good pronunciation, such as consonants, suprasegmental features (i.e., rhythm, stress, intonation, linking), and voice quality settings (i.e., pitch level, vowel space, neutral tongue position, and degree of muscular activity) (Celce-Mercia, Brinton & Goodwin, 1996). No correlation was found directly between Knowledge and Passage Reading possibly because of a small group size.
4.2 Study II

Comparisons between the pre-test and the post-test are given in Table 3. Descriptive statistics and a correlation matrix for both the pre-test and the post-test are presented in Table 4 and 5.

<table>
<thead>
<tr>
<th>Measure (total possible)</th>
<th>Pre-treatment</th>
<th>Post-treatment</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>2. Listening (120)</td>
<td>79.32</td>
<td>11.94</td>
<td>87.45</td>
</tr>
<tr>
<td>3. Passage Reading (evaluated on 1-7 scale)</td>
<td>2.96</td>
<td>.43</td>
<td>3.90</td>
</tr>
</tbody>
</table>

N = 75
* = p < 0.05; ** = p < 0.01

Table 4 Descriptive statistics and a correlation matrix (Pre-test)

<table>
<thead>
<tr>
<th>Measure (total possible)</th>
<th>Mean</th>
<th>SD</th>
<th>Reliability</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Knowledge (29)</td>
<td>13.64</td>
<td>3.57</td>
<td>.874</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Listening (120)</td>
<td>79.32</td>
<td>11.94</td>
<td>.910</td>
<td>.353*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Passage Reading (evaluated on 1-7 scale)</td>
<td>2.96</td>
<td>.43</td>
<td>.749</td>
<td>.113</td>
<td>.242*</td>
<td></td>
</tr>
</tbody>
</table>

N = 75
* = p < 0.05; ** = p < 0.01

Table 5 Descriptive statistics and a correlation matrix (Post-test)

<table>
<thead>
<tr>
<th>Measure (total possible)</th>
<th>Mean</th>
<th>SD</th>
<th>Reliability</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Listening (120)</td>
<td>87.45</td>
<td>12.75</td>
<td>.941</td>
<td>.440*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Passage Reading (evaluated on 1-7 scale)</td>
<td>3.90</td>
<td>.60</td>
<td>.783</td>
<td>.328*</td>
<td>.311*</td>
<td></td>
</tr>
</tbody>
</table>

N = 75
* = p < 0.05; ** = p < 0.01

All three parts of the test showed statistically significant gains, suggesting that a specifically designed pronunciation course could improve adult learners’ overall pronunciation, their metalinguistic knowledge and their perception of English sounds. Before the treatment, the participants averaged 2.96 in Passage Reading, which is just below 3 (somewhat intelligible) on the 1-7
evaluation scale. It improved to a post-test average of 3.90, just below 4 (reasonably intelligible). Though all the gains were significant at \(p < .01 \), it is of interest to note that Listening showed the smallest gain, suggesting the difficulty involved in learning to listen to foreign sounds.

The pre-test shows no correlation between Knowledge and Passage Reading, while Listening is significantly correlated to Passage Reading. \((r = .242; p < .01) \). The correlation found between Listening and Passage Reading seems to contradict Study I, in which Listening was not correlated to either Vowel Reading or Passage Reading. The different results are possibly due to the change in the Listening test. The Listening test in Study II had more items, and each vowel was read more slowly than in Study I in an attempt to make the contrast in the minimal pairs more noticeable (The average listening score in Study I was 62.5%; the average post-test score in Study II was 72.5%). The correlation between Listening and Passage Reading suggests that some of the L2 phonology they had acquired may have been “picked up” through listening and mimicking. Lack of a correlation between Knowledge and Passage Reading, and the very low scores in the Knowledge part of the test indicate that the participants had no or very little explicit knowledge about these phonemes and did not draw on their metalinguistic skills when reading the given passage.

A significant correlation between Knowledge and Passage Reading was found in the post-test, which suggests that when abstract rules of discrete phonemes are learned, they are turned into automatic, productive use, resulting in better performance. Passage Reading was also significantly correlated to Listening, showing that perception abilities could play as important a part as explicit knowledge in developing L2 phonology. The importance of perception, though seemingly running counter to the findings of Sheldon and Strange (1982), does not contradict them. They did not claim that perception and production of sounds were independent of each other; they only argued that perceptual mastery of phonemes does not necessarily precede adult learners’ ability to produce them. They also recognized the possibility that when a larger group of learners was investigated, a positive correlation between the two factors could emerge.

The correlation between Knowledge and Listening is also of significance. Though it may simply show that good test takers perform well in both sections, it also suggests that a better
metalinguistic awareness helped learners improve their perception, and vice versa. And both of them, by interacting closely with each other, contributed to the overall production.

5. Conclusions

The two studies suggest:
1) Explicit knowledge of phonemes plays an important role in improving L2 phonology.
2) Perception of phonemes could also contribute to a better grasp of L2 phonology.
3) Perceptual mastery of the five vowels does not precede the participants’ ability to produce them.
4) A specifically designed pronunciation course could improve learners’ overall pronunciation.

The results of the two studies seem to indicate that when declarative knowledge about phonemes is gained, it could lead to a better overall performance, just as explicit knowledge about grammatical rules could promote acquisition. Perception is also relevant in the development of L2 phonology, even though perfect perceptual ability is not required in order to produce the sounds correctly.

The findings in the two studies are a strong argument supporting the usefulness of explicit instruction in phonetic symbols in school. Though some learners may be blessed with a good “ear,” and do not need to see phonetic transcription or even explanations of articulatory positions to produce sounds, the data show that a significant number of learners could benefit from the teaching of abstract rules. In the interviews conducted after Study II, a large number of participants commented not only that explicit instruction coupled with phonetic transcription helped them learn to produce English sounds better, but also that being able to produce sounds better led them to hear the sounds better.

By pointing out the importance of explicit instruction, the authors are by no means suggesting that teachers once again subscribe to the traditional mode of a rigid teaching sequence, where presentation of abstract rules must come first, followed by practice and error correction until the rules are mastered. Teachers must be aware that “explicit instruction does not lead
Atsuko KASHIWAGI et al.

directly to automatic, productive use, but direct instruction, consciousness-raising, and a focus on form are valuable to the extent that they help learners bring order to the input they encounter, facilitate understanding, and boost or support natural acquisition" (Schmidt, 1995: p.4). Efforts should be made to explore how direct instruction of rules can be incorporated within a communicative framework.

Intelligible pronunciation is essential to effective communication. Hinofotis and Bailey (1980) showed in their research that there is a threshold level of pronunciation in English; if a non-native speaker’s pronunciation falls below that level, he or she will not be able to orally communicate no matter how good their grammar or vocabulary is. Learners themselves know this simple axiom very well. When their opinions are investigated, learners invariably give a very high priority to improvement of their pronunciation (Nunan, 1988; Willing, 1988). Any English curriculum which purports to help learners develop communicative skills cannot ignore the development of L2 phonology, and a wide range of teaching options including direct instruction in segmentals should be tried to achieve the goal.

6. Suggestions for future studies

Even though the two studies reported here gave some evidence that a specifically designed pronunciation course could improve L2 pronunciation and that explicit knowledge of L2 phonetics could lead to a better performance, they nonetheless have some limitations. The participants were evaluated on their reading of a prepared passage, but there is some doubt about whether pronunciation shown in the reading of a text can be retained when the participants engage in spontaneous speech. (Celce-Murcia, Brinton and Goodwin, 1996). Further empirical investigations are needed to test how much of the metalinguistic awareness could carry over to truly spontaneous speech in which more attention must be paid to meaning, not to form.

Notes

1 It is interpreted that the 1989 Monbusho guidelines, which went into effect in 1994, made phonetic
transcription optional for the high school curriculum, when the wording got changed to “Consideration must be made about the use of phonetic transcription as an instructional aid.” The previous guidelines issued in 1979 wrote, “The use of phonetic transcription is recommended as an instructional aid.” The most recent guidelines issued in 1999 put even less focus on phonetic symbols, saying “Phonetic transcription could be used as an instructional aid.”

The consensus in the teaching profession now is that the goal of teaching pronunciation is not to make learners sound like native speakers, but to make them intelligible. While it may not be realistic to expect ordinary learners to achieve native-like pronunciation, it is considered possible to teach adults to improve their pronunciation so that their pronunciation will not detract from communication.

REFERENCES

variable effects of different types of instruction. *Language Learning, 44(1)*, 75-100.

APPENDICES

Appendix 1
“One morning last April, Susan was still sleeping when the doorbell rang. It was her friend Dave inviting her to go to the beach for a picnic. Later that morning, Susan left her house and walked to the station to catch the bus. She was wearing a T-shirt and shorts, since it was quite warm. As she sat on the bus, she looked out the door. She saw some sheep in a field. It was starting to snow. Before long, the snow stopped and the sun came out. Susan arrived at the pool and met Steve. They walked down to the beach and had their picnic next to a tree. They had coffee and cake, and Steve painted a picture. They had a really nice evening.” (Hewings and Goldstein, 1998: p.11)

Appendix 2
Evaluation Criteria, adapted from Speech Intelligibility Index (Morley, 1991)
1. Speech is basically unintelligible; only an occasional word/phrase can be recognizable.
2. Speech is often unintelligible; great listener effort is required. Native speakers unaccustomed to Japanese speakers will have a hard time understanding it.
3. Speech is somewhat intelligible; parts of the speech are still difficult to understand even with effort. Speech is marked with pronounced accent and choppy delivery.
4. Speech is reasonably intelligible. While speech is still rather choppy and marked with accent, listeners can understand if they concentrate on the message.
5. Speech is largely intelligible. While sound and prosodic variances from NS norm are still evident, they do not impede greatly with comprehension. Delivery is rather smooth.
6. Speech is intelligible. Sound and prosodic variances from NS norm are still exist but do not impede much with comprehension. Delivery is smooth.