e-Journal of Surface Science and Nanotechnology
Online ISSN : 1348-0391
ISSN-L : 1348-0391
Regular Papers
Scanning Electrochemical Microscopy as a Characterization Tool for Reduced Graphene Oxide Field Effect Transistors
Ciril Reiner-RozmanJürgen SchodlChristoph NowakChristoph Kleber
Author information
JOURNAL FREE ACCESS
Supplementary material

2015 Volume 13 Pages 366-372

Details
Abstract

Reduced graphene oxide coated SiO2/Si substrates were obtained by wet-chemical reduction of graphene oxide for the use as semiconductor material in field-effect transistors. The morphological and chemical characterization was done by using SEM, Raman spectroscopy and XPS. Raman and XPS measurements can characterize the success of the graphene-oxide reduction, but only for small parts spots of the surface (e.g. 0.41 μm2 laser spot size with Raman). In order to evaluate larger surface areas and the electrochemical activity of the graphene oxide and reduced graphene oxide, additional spectroscopic measurements using the SECM were performed. The samples coated with unreduced graphene oxide showed no electrochemical activity, while reduced graphene oxide samples showed conducting properties. Further information about the topology of the surface was obtained by applying the SECM constant distance mode. The degree of graphene coverage was calculated from SECM data and compared to the coverage obtained by SEM. It was found that 68±7% coverage is sufficient to ensure electronic contact between the Source and Drain electrodes (resistance less than 1 kΩ). Functionality of the fabricated field effect transistors was demonstrated by titration of pH solutions and characterization of the characteristic curves. [DOI: 10.1380/ejssnt.2015.366]

Content from these authors

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top