
Masakazu Ichikawa*
Department of Applied Physics and Quantum-Phase Electronics Center, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

Keywords: Semi-empirical models and model calculations; Plasmon; Metal nanostructures

Due to a mistake in the final step of the preparation of Ref. [1] in the editorial office, some of the equation numbers were wrongly changed. In Appendix of this reference, the equation numbers (23) to (29) should be corrected as (A1) to (A7) as follows.

\[P(r_1, r_2, \omega) = P_0(r_1, r_2, \omega) + \int \int d r_3 d r_4 P_0(r_1, r_3, \omega) \times e^2 G_0(r_3 - r_4, \omega) P(r_4, r_2, \omega), \quad (A1) \]

\[P_0(r_1, r_2, \omega) = \frac{2}{\hbar} \sum_{n, n'} | \psi_n^*(r_1) \cdot \psi_n(r_2) \cdot \psi_{n'}^*(r_2) \cdot \psi_{n'}(r_1) | \times \theta(E_F - E_n) / \omega + (E_n - E_{n'}) / \hbar + i \eta, \quad (A2) \]

\[\left[\frac{\hbar^2}{2 m_e} \nabla^2 + V(r) \right] \psi_n(r) = E_n \psi_n(r). \quad (A3) \]

\[\left(\nabla^2 + \frac{\omega^2}{c^2} \right) G_0(r - r_1, \omega) = -4 \pi \delta(r - r_1), \]

\[G_0(r - r_1, \omega) = \frac{1}{\omega + (E_n - E_{n'}) / \hbar} \approx \frac{1}{\omega} \left[1 - \frac{E_n - E_{n'}}{\hbar \omega} \right], \quad (A4) \]