Superlubricity of MoS$_2$ at Submicron Scale

Kouji Miura

Department of Physics, Aichi University of Education, Hirosawa 1, Igaya-cho, Kariya 448-8542, Japan

† Corresponding author: kmura@auecc.aichi-edu.ac.jp

Received: 26 June, 2019; Accepted: 24 August, 2019; Published: 5 September, 2019

When the mean free paths of acoustic phonons are larger than half the MoS$_2$ island size, the generated acoustic phonons remain at nonequilibrium and are confined within the island or form standing waves. In contrast, when the island size decreases to less than 1 μm, surface softening increases, reducing the barrier of the tip–surface interaction potential. Unexpectedly, the friction force from an island with a size of 0.2 μm abruptly decreases to below 10 pN. The superlubricity described here is a novel type involving phonon confinement and surface softening that is easily achievable and very simple because it uses only nanostructures smaller than 1 μm.

Keywords: Superlubricity; Submicron island; Phonon confinement; Surface softening; Energy dissipation

I. INTRODUCTION

It is well known that energy dissipates through friction between solids. Many studies [1] on friction have discussed energy dissipation in terms of phononic and electronic excitations. Studies on the sliding of adsorbed films with single-molecule thickness on a substrate using various spectroscopic techniques have also been reported [2, 3]. However, little is known about how phonons form [4] and propagate in the friction process with a load and shear, although phonons ultimately change into heat. This is because it would be difficult to directly measure the energy dissipation in situ during sliding accompanied by a loading force and shear. Thus, we have established tribo-phonon spectroscopy (TPS), which can measure the dissipation energy of a phonon [5].

On the other hand, nanomaterials have very different physical and chemical properties from their bulk counterparts. For example, nanoparticles often have lower melting points, transition pressures, and stiffness. Such differences also apply to the tribological behavior of lubricants [6]. The coefficient of friction of nanoparticles is much smaller than that of the corresponding bulk materials. Nanoparticle can be added to solids and oil to greatly reduce their friction [7]. Moreover, acoustic or sonic lubrication occurs when sound-induced vibration introduces a gap between sliding faces. Although a number of mechanisms that explain the beneficial effect of these particles on lubrication have been proposed (introducing the protection of sliding surfaces from close contact, the delamination and release of molecular lubricants, and the ball-bearing effect), a full elucidation has not yet been given because the various shapes and sizes of nanoparticles make it difficult to clarify their behavior in solids and in oil.

II. EXPERIMENTAL

MoS$_2$ is a dichalcogenide and comprises weakly bonded S–Mo–S single layers, where the outermost and second layers consist of sulfur and molybdenum atoms, respectively. The Γ, M, and K points of MoS$_2$ in the first Brillouin zone are illustrated in Figure 1(a) [8]. A MoS$_2$ substrate was prepared by cleaving a natural MoS$_2$ block. Here, small islands with a height of 100 nm surrounded by four square holes with a depth of 100 nm were fabricated on a MoS$_2$(0001) flake of $1 \text{mm}^2 \times 5 \mu$m using a focused ion beam (FIB). A scanning electron microscopy (SEM) image of small square islands with a size of 0.2 μm to 5 μm and a height of 100 nm taken in the Γ–M direction is shown in Figure 1(a). Frictional force loops (FFLs) were measured at a relative humidity of less than 50% at room temperature using a commercially available device (Seiko Instruments Inc., SPI-3700). The friction force was directly calibrated by the simultaneous use of two cantilevers [9]. An atomic force microscopy, (AFM) system for use with a quartz crystal microbalance (QCM) was also developed to study the frictional dissipation energy rate from a substrate in contact with a
Figure 1: Scanning electron microscopy (SEM) image of small islands constructed at MoS2(0001) surface and frictional dissipation energy rate $\Delta 1/Q$. (a) SEM image of square islands of size 0.2 μm to 3 μm and 100 nm height on a MoS2(0001) surface, around which four square holes of 100 nm depth are fabricated with a focused ion beam (FIB). Each of these single layers consists of two hexagonal planes of sulfurs (green) and an intercalated hexagonal plane of molybdenum atoms (blue) bonded with the sulfur atoms in a trigonal prismatic arrangement. a_1 and a_2 are the lattice vectors. The Γ, M, and K points in the first Brillouin zone are illustrated. (b) $\Delta 1/Q$ in Γ–K and Γ–M directions on an infinite MoS2(0001) surface. The red and blue lines represent the calculated LA in the Γ–K direction and the calculated TA in the Γ–M direction, respectively. Adapted from Ref. 13.

Figure 2: Experimental setup and method of determining oscillating amplitude. (a) Experimental setup combined atomic force microscope (AFM) with a quartz-crystal microbalance (QCM). (b) Oscillation amplitude A vs. drive voltage V_0. Adapted from Ref. 5.

III. RESULTS

By choosing an appropriate value of A for the QCM, acoustic waves with different wavelengths, ranging from the atomic scale (corresponding to lattice vibration) to the microscale (corresponding to a continuum elastic wave) can be generated, where the wavelength depends on the magnitude of the strain [5]. The lateral elastic strain (deformation) generated by tip shearing with nonzero A becomes an acoustic longitudinal mode (LA) in the Γ–K direction and an acoustic transverse mode (TA) in the Γ–M direction owing to the atomic arrangement of the MoS2(0001) surface. Using the
The oscillation amplitude of the tip and the phonon wavenumber $k = \pi/A$ and scaling $\Delta 1/Q$ with an appropriate constant ($E = 5.6 \times 10^{-13}$ J), $\Delta 1/Q$ for an infinite MoS$_2$(0001) surface was empirically found to be in agreement with the value obtained from the phonon dispersion relations, as shown in Figure 1(b), in which the red and blue lines respectively indicate the calculated LA in the Γ–K direction and the calculated TA in the Γ–M direction. Interestingly, this also suggests a method of generating phonons with different wavelengths, i.e., this method can be used to provide a source of phonons. The mean wavelength of the wave packet $2A$ was used to obtain the phonon wavenumber $k = \pi/A$. This also satisfies the de Broglie equation, and the uncertainty of the wave packet is related to that of the wavenumber via the uncertainty principle [12], i.e., the error bars of $\Delta 1/Q$ for a small k are small, whereas those of $\Delta 1/Q$ for a large k are large, as shown in Figure 1(b). On the other hand, $\Delta 1/Q$ for an infinite MoS$_2$(0001) surface can be approximated using the phonon dispersion relations.

The main finding in this work [13] is that $\Delta 1/Q$ markedly changes with the island size in both the Γ–K and Γ–M directions. As shown in Figure 3, $\Delta 1/Q$ significantly decreases with decreasing island size. The difference $\Delta 1/Q_{\infty} - \Delta 1/Q$, where $\Delta 1/Q_{\infty}$ denotes the dissipation energy in MoS$_2$ with infinite size (∞), indicates the effect of confinement on the dissipation energy due to the finite size of the island. Since the dissipation energy changes with $k = \pi/A$, the difference is further normalized by defining

$$C = \frac{\Delta 1/Q_{\infty} - \Delta 1/Q}{\Delta 1/Q_{\infty}}$$

Figure 3: $\Delta 1/Q$ in Γ–K and Γ–M directions vs. island size. The difference $\Delta 1/Q_{\infty} - \Delta 1/Q$ indicates the effect of confinement on dissipation energy due to the finite size of the island, where $\Delta 1/Q_{\infty}$ represents the dissipation energy of the infinite surface. ($\Delta 1/Q_{\infty} - \Delta 1/Q$)/($\Delta 1/Q_{\infty}$) is the degree of phonon confinement. Adapted from Ref. 13.
Figure 4: Calculated mean free paths (MFPs) of phonons in Γ–K and Γ–M directions. Adapted from Ref. 13.

nm$^{-1}$ and 9 nm$^{-1}$, respectively. For an island size of 8 μm, C markedly decreases in the Γ–K and Γ–M directions when π/A exceeds 10 nm$^{-1}$ and 11 nm$^{-1}$, respectively. Thus, as the island size decreases, the critical point below which C markedly decreases is shifted to a larger π/A, indicating that acoustic phonons with a longer wavelength are gradually confined with decreasing island size. Eventually, the critical point finally disappears regardless of π/A. This can be more clearly understood by comparing the mean free paths (MFPs) of phonons with half the island size because of the vibration of the tip at the center of the island. The MFPs of acoustic phonons obtained from first principles strongly depend on the wavenumber and vary from the submillimeter to the submicron scale, as shown in Figure 4. When the MFPs of phonons are larger than half the island size, because phonons are ballistically transported and reflected at the edges of the island, the generated acoustic phonons remain at nonequilibrium and are confined within the island or form standing waves. However, the lifetime of the acoustic phonons is only of sub-nanosecond order. Since the MFPs of acoustic phonons with a long wavelength exceed 10 μm for both the LA and the TA, these acoustic phonons can be ballistically confined even in a 10 μm island for a small π/A. When the island size decreases to below 1 μm, since the MFPs of acoustic phonons with a wide range of wavevectors are of submicron size, i.e., larger than or similar to half the island size (Figure 4), ballistic phonon confinement occurs regardless of π/A. Therefore, the transition from partial confinement (only for a small π/A) to full confinement (for all π/A) can be explained by the relative sizes of the MFP and island.

On the other hand, when the island size decreases to less 1 μm, surface softening increases. An increase in surface softening (a decrease in bond strength) induces a decrease in Δ1/Q in the dispersion area (or a shift to a lower-frequency area), which appears in both the LA and the TA. Recently, surface softening has been studied in other research fields [14]. Research on surface effects dates back to 1909 [15, 16] and the surface effect has also been reported in the study of ultrafine particles in Japan [17].

Figure 5 shows the FFLs at small square islands with a size of 0.2 μm to 5 μm and a height of 100 nm and at an infinite surface (∞) in the Γ–K and Γ–M directions. The FFLs at the infinite surface (∞) exhibit one- and two-dimensional stick-slips of the tip in the Γ–K and Γ–M directions, respectively, as reported previously [18], because the tip moves along the line corresponding to the minimum of the tip–surface interaction potential. With decreasing island size, the FFLs change from clear stick-slips to continuous motion and markedly decrease in magnitude to become frictionless loops in both directions. Unexpectedly, the friction force from the island with a size of 0.2 μm abruptly falls below 10 pN for much of the trace in both directions, which is close to the pN-order detection limit owing to thermal fluctuations.

Interestingly, a recent study revealed that superlubricity occurs even at a cylindrical silicon pillar of 100 nm height (to be surface layers of silicon oxide) [19]. This indicates that superlubricity due to surface softening may occur in materials other than MoS2.

IV. CONCLUSIONS

When the MFPs of phonons are larger than half the island size, because phonons are ballistically transported and reflected at the edges of the island, the generated acoustic phonons remain at nonequilibrium and are confined within the island or form standing waves. In contrast, when the island size decreases to below 1 μm, surface softening increases, reducing the barrier of the tip–surface interaction potential. Unexpectedly, the friction force from an island with a size of 0.2 μm abruptly decreases to below 10 pN.

There have been many studies on superlubricity over the last 30 years [20–25]. However, the superlubricity described here is a novel type different from that previously studied and is easily achievable and very simple because it involves only islands (including surface textures) of submicron size. Interestingly, conventional technology has been empirically used to add particles of submicron size to solids and oil to decrease friction in the technical field, despite a lack of understanding of the underlying mechanism. Interestingly, macroscopic superlubricity may be realized when a very large number of submicron pillars are constructed on a macroscopic surface.
Acknowledgments

I gratefully acknowledge Professor J. Shiomi and Dr. T. Shiga of The University of Tokyo for calculations of the mean free paths of phonons using first principles, and Dr. M. Ishikawa of Shizuoka University and Professor M. Suzuki of the University of Electro-Communications for the development of tribo-phonon spectroscopy. Most of the experiments were carried out by Mr. N. Wada of Taiho Kogyo Co., Ltd. I acknowledge the financial support from the Eco-Project of Aichi University of Education and JSPS KAKENHI grants No. 17K05054 and No. 26390064 for this research.

References

All articles published on e-J. Surf. Sci. Nanotechnol. are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You are free to copy and redistribute articles in any medium or format and also free to remix, transform, and build upon articles for any purpose (including a commercial use) as long as you give appropriate credit to the original source and provide a link to the Creative Commons (CC) license. If you modify the material, you must indicate changes in a proper way.

Published by The Japan Society of Vacuum and Surface Science