Synthesis and Compactness Dependence on Flower-like Copper Germanate

L. Z. Pei,* Z. Y. Cai, Y. Yang, and Y. Q. Pei

Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Mafanshan, Anhui 243002, P. R. China

(Received 11 July 2011; Accepted 9 August 2011; Published 3 September 2011)

Flower-like CuGeO₃ has been obtained using a simple hydrothermal process by controlling the compactness. X-ray diffraction shows that the flower-like CuGeO₃ is composed of orthorhombic CuGeO₃ phase. Scanning electron microscopy displays that the size of each flower-like CuGeO₃ is about 3 μm which consists of the accumulation of dozens of CuGeO₃ nanorods with the diameter and length of less than 100 nm and about 1 μm, respectively. Compactness dependence results demonstrate that the compactness is the key factor for the formation of flower-like CuGeO₃. Free-standing CuGeO₃ nanowires can be obtained by improving the compactness. Hydrothermal temperature and reaction time have important roles on the size and formation of the flower-like CuGeO₃.

Keywords: flower-like CuGeO₃; compactness; hydrothermal process; electron microscopy

I. INTRODUCTION

Great research interest has been devoted to gemanate one-dimensional (1D) nanomaterials due to the novel physical properties for electrochemical sensors, catalysis, optical and nanoscale electronic devices [1–3]. Cd₂Ge₂O₆ nanowires [4, 5], In₅Ge₂O₇ nanowires [6], zinc germanate nanowires and nanorods [7–12], PbGeO₃ nanowires [13], strontium germanate nanowires [14], calcium germanate nanowires [15, 16] and Bi₂GeO₅ nanobelts [17] have been successfully synthesized by different methods, such as hydrothermal method, thermal evaporation and chemical vapour deposition (CVD) process. Among these germanates, copper germanate (CuGeO₃), as the first solid-state compound that undergoes a spin-Peierls transition, CuGeO₃ and its analogues with the SP transition were merely prepared by high temperature reaction processes, in which a floating-zone method was generally employed to ensure the growth of large single crystals [18]. In an opinion of the strong relationship between the structures and properties of CuGeO₃, it is of great significance to extend the research of CuGeO₃ 1D nanomaterials.

Single crystalline CuGeO₃ nanobelts have been synthesized by a simple hydrothermal route using cetyltrimethylammonium bromide (CTAB) as the surfactant at 180°C for 24 h [19]. The obtained CuGeO₃ nanobelts show distinct susceptibility behaviors in comparison with CuGeO₃ bulk crystals. Interesting magnetic properties of the layered CuGeO₃ nanobelts were also obtained. In our past research, by the combination of hydrothermal method and deposition process, single crystalline CuGeO₃ nanowires have been synthesized using GeO₂, copper sheets [20] and GeO₂, CuO, copper sheets [21] as the Ge raw material, Cu raw material and deposition substrate, respectively. The obtained CuGeO₃ nanowires display good optical and electrochemical properties. The CuGeO₃ nanowires can be used as a kind of novel electrochemical modified electrode material which exhibits a novel electrocatalytic effect to the electrochemical reaction of L-cysteine. The intensities of two electrochemical anodic peaks at the modified electrode are proportional to the concentration of cysteine, which can be used to detect cysteine sensitively [22].

Very recently, single crystalline CuGeO₃ nanowires in bulk have been successfully synthesized via a facile hydrothermal process using GeO₂ and Cu(CH₃COO)₂·H₂O as the raw materials in the absence of any surfactants by us so as to improve the yield of the CuGeO₃ nanowires [23]. The yield of the CuGeO₃ nanowires is higher than 80 wt.%. It is noticed that the compactness of the autoclave is a very important factor for the formation of 1D nanostructures with different morphologies [24]. The volume ratio of water in the autoclave is called compactness. In the paper, we report the synthesis of flower-like CuGeO₃ by controlling the compactness using GeO₂ and Cu(CH₃COO)₂·H₂O as the raw materials without using any surfactants. The compactness dependence on the formation of the CuGeO₃ nanostructures has been analyzed and the formation process of the flower-like CuGeO₃ is also discussed.

II. EXPERIMENTAL

High pure GeO₂ powders (purity: ≥99.99%) and Cu(CH₃COO)₂·H₂O (A.R. grade, purity: ≥99.0%) were
purchased from Sinopharm Chemical Reagent Co., Ltd. of China. All raw materials were used without further purification. In a typical procedure, 0.16 g GeO$_2$ and 0.305 g Cu(CH$_3$COO)$_2$·H$_2$O were dissolved in 20 mL deionized water under vigorous stirring. The compactness of the autoclave is 20 vol.%. Then, the mixture was placed into a 100 mL autoclave. The autoclave was maintained at 180°C for 24 h. Subsequently the autoclave was cooled naturally in air. The light blue precipitates were filtered, washed with deionized water for several times and dried at 60°C in air.

The light blue samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) spectrum. XRD pattern was carried out on a Bruker AXS D8 X-ray diffractometer equipped with a graphite monochromatized Cu-Kα radiation (λ = 1.5406Å). The samples were scanned at a scanning rate of 0.05°/s in the 2θ range of 20-80°. SEM observation was performed using JEOL JSM-6490LV SEM with a 15-KV accelerating voltage. FTIR spectroscopy (Perkin Elmer PE, WQF-410 spectrometer) was used at room temperature in the range of 4000-450 cm$^{-1}$ with a resolution of 4 cm$^{-1}$.

III. RESULTS AND DISCUSSIONS

The XRD pattern of the light blue products obtained from 180 °C for 24 h with the compactness of 20 vol.% is shown in Fig. 1. All indexed peaks in the spectrum are well matched with those of the orthorhombic structure CuGeO$_3$ (JCPDS Card No. 32-0333) which is same to that of the CuGeO$_3$ nanowires prepared from GeO$_2$, copper sheets [20] and GeO$_2$, Cu(CH$_3$COO)$_2$·H$_2$O [23] respectively. No other impurity peaks are detected in the spectrum further confirming that the obtained product is pure CuGeO$_3$.

The SEM images of the light blue products with different magnification are shown in Fig. 2. From the SEM images, it can be seen that the products exhibit flower-like morphology. So the products are defined as flower-like CuGeO$_3$. The size of each CuGeO$_3$ nanoflower is about 3 µm (Fig. 2(a)). The magnified SEM image (Fig. 2(b)) shows that the flower-like structures are composed of the accumulation of dozens of CuGeO$_3$ nanorods. The diameter of the nanorods in the flower-like CuGeO$_3$ is less than 100 nm and the length is about 1 µm. It is found that the nanorods originate from a single center arranging them in a spherical sharp exhibiting flower-like morphology. The morphology of the flower-like CuGeO$_3$ from a large amount of nanorods is similar to those of ZnO [25] and MoO$_3$ [26] flower-like morphology grown by hydrothermal process.

The FTIR spectrum of the flower-like CuGeO$_3$ obtained from 180°C for 24 h with the compactness of 20 vol.% is shown in Fig. 3. The absorption bands at 2800-3800 cm$^{-1}$ with the absorption peaks at 3407.60 cm$^{-1}$ and 2933.19 cm$^{-1}$ are the characteristic stretching vibration of hydroxylate (–OH) originating from water. Peaks at 1633.41 cm$^{-1}$, 1398.14 cm$^{-1}$ and 620.97 cm$^{-1}$ are assigned to the vibration of carboxylate (O–C=O) which is caused by the residue (CH$_3$COO)$^-$ in the product [27]. The absorption peaks at 710-861 cm$^{-1}$ are attributed to the vibration mode B$_{2u}$ and A$_g$ fundamental of the GeO$_4$ group of CuGeO$_3$ [28]. CuGeO$_3$ consists of basic building blocks of corner-sharing GeO$_4$ tetrahedra. Cu atoms are surrounded by six O atoms forming strongly deformed CuO$_6$ octahedra. Therefore, these absorption peaks at 854.31 cm$^{-1}$, 815.74 cm$^{-1}$ and 719.32 cm$^{-1}$ are attributed to GeO$_4$ group of CuGeO$_3$. The absorption peak at 528.39 cm$^{-1}$ corresponds to the Cu–O deformed vibration of CuGeO$_3$ [29].

The roles of the hydrothermal temperature and reaction time with the compactness of 20 vol.% on the formation of the flower-like CuGeO$_3$ are analyzed in order to understand the possible formation process of the flower-
Like CuGeO$_3$. Figure 4 is the SEM images of the products obtained from 180°C for 12 h, 6 h and 0.5 h, respectively. Flower-like CuGeO$_3$ with similar morphology is still observed with the decrease of the reaction time at 180°C. The size of the nanorods in the flower-like CuGeO$_3$ is similar with the reaction time decreasing to 12 h (Figs. 4(a) and (b)). However, the diameter and length of the nanorods in the flower-like CuGeO$_3$ decrease to about 50 nm and 500 nm, respectively with the reaction time decreasing to 6 h (Figs. 4(c) and (d)). Furthermore, some microscale particles are observed besides the flower-like CuGeO$_3$ when the reaction time continues 0.5 h (Figs. 4(e) and (f)). The diameter and length of the nanorods in the flower-like CuGeO$_3$ decrease to about 30 nm and 300 nm, respectively. These microscale particles act as a kind of intermediate reaction product forming the nuclei. The nanorods in the flower-like CuGeO$_3$ originate from nuclei of the microscale particles and grow continuously with the increase of the reaction time.

Figure 5 is the SEM images of the products obtained from 120°C and 80°C for 24 h, respectively showing the similar flower-like morphology. The diameter and length of the nanorods in the flower-like CuGeO$_3$ in Figs. 5(a) and (b) are similar to those synthesized from 180°C for 24 h. However, the diameter and length of the nanorods in the flower-like CuGeO$_3$ decrease to about 70 nm and 500 nm, respectively (Figs. 5(c) and (d)) when the hydrothermal temperature decreases to 80°C.

According to the SEM results synthesized from different reaction time and hydrothermal temperature with the compactness of 20 vol.%, it is suggested that the reaction time and hydrothermal temperature play important roles in the formation and size of the flower-like CuGeO$_3$. What is essential role on the formation of the flower-like CuGeO$_3$? It is known that the free-standing CuGeO$_3$ nanowires can be obtained by controlling the compactness of 60 vol.% [23]. Further compactness dependence on the formation of the flower-like CuGeO$_3$ is analyzed in order to understand the possible formation reason of the flower-like CuGeO$_3$. Figure 6 is the SEM images of the products obtained from 180°C for 24 h with the compactness of 40 vol.%, 60 vol.% and 80 vol.%, respectively.
Cluster-shaped structures composed of nanorods with the increased length of about 5 μm are observed when the compactness increases to 40 vol.% (Figs. 6(a) and (b)). When the compactness increases to 60 vol.%, a large amount of uniform free-standing CuGeO$_3$ nanowires with typical lengths of several tens of micrometers and average diameter of about 50 nm are obtained (Figs. 6(c) and (d)). No flower-like CuGeO$_3$ morphology is found from the products. The free-standing CuGeO$_3$ nanowires have a broad diameter distribution with the compactness increasing to 80 vol.% (Figs. 6(e) and (f)). The diameter of the CuGeO$_3$ nanowires increases to 0.1-2 μm. The results suggest that the compactness is the essential factor for the formation of the flower-like CuGeO$_3$.

Figure 7 shows the FTIR spectra of the products obtained from 180°C for 24 h with the compactness of 40 vol.% 60 vol.% and 80 vol.%. The FTIR spectra of the products obtained from different compactness exhibit absorption peaks at about 3421.81 cm$^{-1}$, 1633. 84 cm$^{-1}$, 856.56 cm$^{-1}$, 812.32 cm$^{-1}$, 723.84 cm$^{-1}$, 617.05 cm$^{-1}$ and 528.57 cm$^{-1}$. The absorption peaks are very similar to that of the products obtained from the compactness of 20 vol.% The results show that the CuGeO$_3$ can be formed from different compactness.

According to the present experiment results, the flower-like CuGeO$_3$ is considered to be formed by an assembled growth process. At the initial reaction stage of GeO$_2$ and Cu(CH$_3$COO)$_2$·H$_2$O, GeO$_2$ reacts with H$_2$O forming H$_2$GeO$_3$. The reaction between Cu$^{2+}$ and H$_2$GeO$_3$ yield CuGeO$_3$ cores. Therefore, nucleation process exists at the initial reaction stage of GeO$_2$ and Cu(CH$_3$COO)$_2$·H$_2$O forming CuGeO$_3$ crystals. The nanorods originating from the CuGeO$_3$ nuclei grow continuously with the increase of the reaction time and hydrothermal temperature. When the compactness of the autoclave is low, such as 20 vol.%, the CuGeO$_3$ nanorods mainly exist in the bottom of the autoclave with less water owing to the vaporization of water arranging themselves in a flower-like structure by an assembled process. With the increase of the compactness of the autoclave, the CuGeO$_3$ nanorods mainly exist in water resulting in the formation of the free-standing CuGeO$_3$ nanowires.

IV. CONCLUSIONS

In summary, flower-like CuGeO$_3$ with orthorhombic CuGeO$_3$ nanorods has been achieved by a hydrothermal route by controlling the compactness of 20 vol.%. No surfactants are necessary for the synthesis of the flower-like CuGeO$_3$. The diameter of the total flower-like structure is in the micrometer scale size. The diameter and the length of the nanorods in the flower-like CuGeO$_3$ are less than 100 nm and about 1 μm, respectively. Compactness dependence results demonstrate that the compactness is the key factor for the formation of the flower-like CuGeO$_3$ which can be explained by an assembled growth process.

Acknowledgments

This work was supported by the Natural Science Foundation of the Education Bureau of Anhui Province of China (KJ2011A042) and Innovative Research Foundation of Postgraduate of Anhui University of Technology (2010008).