Synthesis and Optical Properties of Al\textsubscript{2}O\textsubscript{3}:Cr3+ Powders*

Trinh Thi Loan,† Nguyen Ngoc Long, and Le Hong Ha
Faculty of Physics, Hanoi university of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
(Received 11 December 2009; Accepted 18 March 2011; Published 27 December 2011)

The Al\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{3} powders with dopant contents ranging from \(x = 0.005\) to 0.35 have been prepared by sol-gel method. The powders were prepared from aluminium nitrate Al(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O, chrome nitrate Cr(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O, and citric acid and heat-treated at 650-1300°C for 5 h. The effect of dopant concentration and heat-treating temperature on the structural and optical properties of the synthesized samples has been studied. The results showed that the structure, the size and optical properties of Al\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{3} crystallites strongly depend on the mole fraction \(x\) and heating temperature. At low heating temperatures, the samples with the low mole fraction \(x\) exhibit \(\gamma\)-Al\textsubscript{2}O\textsubscript{3} phase and the emission spectra consist of a broad asymmetric peak with the maximum at 691 nm. With the high mole fraction \(x\), the samples consist of \(\alpha\)-Al\textsubscript{2}O\textsubscript{3} and Cr\textsubscript{2}O\textsubscript{3} phases. By increasing the mole fraction \(x\), the emission bands are broadened and shifted towards the long-wavelength side. At high heating temperatures, all the synthesized samples are \(\alpha\)-Al\textsubscript{2}O\textsubscript{3} single phase and the emission spectra mainly consist of lines at 691.6 and 693.2 nm. [DOI: 10.1380/ejssnt.2011.531]

Keywords: Cr3+-doped Al\textsubscript{2}O\textsubscript{3} powders; Sol-gel method; Structural properties; Optical properties

I. INTRODUCTION

Aluminium oxide materials play a key role in many technologies due to its remarkable physical properties, such as a high melting point, hydrophobicity, high elastic modulus, high optical transparency, high refractive index (about 1.76 at 632.8 nm wavelength), thermal and chemical stability, low surface acidity, and dielectric characteristics. The Al\textsubscript{2}O\textsubscript{3} materials exhibit more than 15 distinct crystallographic phases, and it can undergo a variety of transitions until the most-stable \(\alpha\)-Al\textsubscript{2}O\textsubscript{3} phase, in which all the cations are in a six-coordinate environment, forms at high temperature [1]. It is well-known that \(\gamma\)-Al\textsubscript{2}O\textsubscript{3} is an extremely important form of the known alumina crystaline phases, widely applied as a catalyst and catalyst support of transition element clusters in the automotive and petroleum industries. \(\alpha\)-Al\textsubscript{2}O\textsubscript{3} doped with transition metal Cr3+ and Ti4+ ions is the most important phase for laser hosts, possessing excellent emitting properties [2]. The Al\textsubscript{2}O\textsubscript{3}:Cr3+ crystal has no absorption band in the near infrared range and has ever acted as a landmark in development of laser history [3], and will still play an important role in future. There are many methods to prepare Al\textsubscript{2}O\textsubscript{3}:Cr3+ materials, such as the sol-gel method, solid-state reaction, pulsed laser deposition, hydrothermal method and so on. Because of the existence of many various crystallographic phases, in order to obtain the alumina materials with desired phase, in this work we studied the effect of dopant concentration and heat-treating temperature on the structural and optical properties of the Al\textsubscript{2}O\textsubscript{3}:Cr3+ samples synthesized by sol-gel method.

II. EXPERIMENTAL

The Al\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{3} powders with dopant contents ranging from \(x = 0.005\) to 0.3 have been prepared by sol-gel method. The powders were prepared from Al(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O, Cr(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O, and citric acid. Al(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O and Cr(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O solutions were mixed with the A3+-to-Cr3+ mole ratios of (2-x) : x. Citric acid aqueous solution was added to the above solution and the mixed solution temperature was kept constant at 70°C until a highly viscous gel was formed. After drying in air at 120°C for 24 h, the gel is converted to a xerogel more opaque and dense. The xerogel was annealed in the temperature range of 650-1300°C in air for 5 h. The crystal structure of the samples was characterized by a Siemens D5005 X-ray diffraction (XRD) diffractometer. Photoluminescence (PL) spectra and photoluminescence excitation (PLE) spectra were measured at room temperature using a Fluorolog FL3-22 spectrofluorometer with a xenon lamp of 450 W being used as an excitation source.

III. RESULTS AND DISCUSSION

The XRD patterns of the of the Al\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{3} powders with \(x = 0.005\) and heat-treated at 650-900°C are shown in Fig. 1. The samples heat-treated at 650 and 750°C are amorphous. The \(\gamma\)-Al\textsubscript{2}O\textsubscript{3} phase with very broad diffraction peaks are clearly seen in the samples calcined at 800-900°C. In the XRD patterns no any peak of impurity phase has been observed. In the heat-treating temperature range from 800 to 900°C, the position and the full width at half maximum of the diffraction peaks are similar.

Figure 2 shows the XRD patterns of the Al\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{3} samples with \(x = 0.1\) and heat-treated at 650-900°C. Unlike the samples with \(x = 0.005\), for the samples with \(x = 0.1\), the characteristic peaks of \(\gamma\)-Al\textsubscript{2}O\textsubscript{3} phase can be clearly seen already in the samples calcined at 750°C.

The XRD patterns of the Al\textsubscript{2-x}Cr\textsubscript{x}O\textsubscript{3} samples with \(x = 0.2\) and heat-treated at 650-900°C are shown in Fig. 3. Contrary to the case of the samples with \(x = 0.005\) and 0.1, in the XRD pattern of the sample with \(x = 0.2\) undergone a heat-treatment at the temperature of 650°C, the peaks corresponding to Cr\textsubscript{2}O\textsubscript{3} phase appeared. No additional peaks due to \(\gamma\)-Al\textsubscript{2}O\textsubscript{3} phase are observed. With increasing heat-treatment temperature, the intensity of

*This paper was presented at the International Workshop on Advanced Materials and Nanotechnology 2009 (IWAMN2009), Hanoi University of Science, VNU, Hanoi, Vietnam, 24-25 November, 2009.
†Corresponding author: loan.trinhthi@gmail.com

ISSN 1348-0391 © 2011 The Surface Science Society of Japan (http://www.sssj.org/ejssnt)
FIG. 1: XRD patterns of the Al$_{2-x}$Cr$_x$O$_3$ samples with $x = 0.005$, heat-treated at different temperatures. (a) $T = 650$, (b) 750, (c) 800, (d) 850, and (e) 900°C.

FIG. 2: XRD patterns of the Al$_{2-x}$Cr$_x$O$_3$ samples with $x = 0.1$, heat-treated at different temperatures. (a) $T = 650$, (b) 750, (c) 800, (d) 850, and (e) 900°C.

The diffraction peaks of Cr$_2$O$_3$ phase decreases, but that of the diffraction peaks of γ-Al$_2$O$_3$ phase increases. Besides, some weak diffraction peaks of ρ-Al$_2$O$_3$ phase are also observed.

The lattice constants and the average crystalline sizes of all the mentioned samples calculated from the XRD patterns are shown in Table I. It can be seen from the table, for each value of x, the lattice constants almost keep constant in the calcined temperature range of 750-900°C. It is also interested to notice that the grains of the γ-Al$_2$O$_3$ phase in the samples calcined at the temperatures in the range of 750-900°C have very small average sizes of 6-7 nm.

For studying the effect of high dopant concentration on the structure of the synthesized samples, the XRD patterns of the samples with $x = 0.35$, heat-treated at different temperatures were examined. The results presented in Fig. 4 show that at heat-treating temperature 650°C, in addition to the diffraction peaks of the Cr$_2$O$_3$ phase, the ρ-Al$_2$O$_3$ phase narrow peaks are observed, although it is well-known that the ρ-Al$_2$O$_3$ phase only exists at the high temperature. For higher heat-treating temperature, the γ-Al$_2$O$_3$ phase weak peaks are observed. With increasing heat-treatment temperature, the intensity of the diffraction peaks of the Cr$_2$O$_3$ phase decreases, but that of the diffraction peaks of the ρ-Al$_2$O$_3$ phase increases. Different from the samples with $x = 0.2$, for the samples with $x = 0.35$, the intensity of the ρ-Al$_2$O$_3$ phase peaks stronger than that of the γ-Al$_2$O$_3$ phase peaks.

For examining the effect of dopant concentration on the structural properties of the synthesized samples at high heat-treating temperature, the XRD patterns of samples with different mole fractions x and undergone a heat-treatment at 1000°C and 1300°C were investigated and the results are presented in Figs. 5 and 6, respectively. At 1000°C, for $x = 0.005$, the XRD patterns present the cubic γ-Al$_2$O$_3$ phase with additional weak peaks that correspond to the presence of the hexagonal ρ-Al$_2$O$_3$ phase. With increasing the mole fraction x, the intensity of the diffraction peaks of the γ-Al$_2$O$_3$ phase decreases, but that of the diffraction peaks of the ρ-Al$_2$O$_3$ phase increases and for $x = 0.35$, no diffraction peaks of the γ-Al$_2$O$_3$ are observed. Beside, for $x = 0.25$, characteristic peaks of the Cr$_2$O$_3$ phase are observed. At 1300°C, all the synthesized samples with different mole fractions x are pure ρ-Al$_2$O$_3$ phase. It can be noticed that at high heat-treating
TABLE I: The dependence of the lattice constants and the average crystalline sizes on the amount of Cr in Al$_{2-x}$Cr$_x$O$_3$ with different heat-treatment temperatures.

<table>
<thead>
<tr>
<th>x</th>
<th>T (°C)</th>
<th>a (Å)</th>
<th>D (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>800-900</td>
<td>7.92 ± 0.02</td>
<td>6 - 7</td>
</tr>
<tr>
<td>0.1</td>
<td>750-900</td>
<td>7.94 ± 0.02</td>
<td>6</td>
</tr>
<tr>
<td>0.2</td>
<td>750-900</td>
<td>7.96 ± 0.02</td>
<td>6</td>
</tr>
</tbody>
</table>

Temperature, with increasing the mole fraction x, the position of the diffraction peaks shifted towards the high-theta side, which is associated with an increase in the d$_{hkl}$ and the lattice constants. The values of d$_{hkl}$ and the lattice constants of the samples calculated from the XRD patterns are shown in Table II.

The PL spectra of the Al$_{2-x}$Cr$_x$O$_3$ samples with $x = 0.005$, heat-treated at 650-900° C, excited by 556 nm wavelength are shown in Fig. 7. The results showed that the PL spectra of the Al$_{2-x}$Cr$_x$O$_3$ nanocrystalline samples with size 6-7 nm consist of a broad asymmetric peak with the maximum at 691 nm (noted by R-line). The position of the peak at 691 nm indicates that the broad band belong to the non-uniformly broadened $^4A_2(^4F)$ transitions in the Cr$^{3+}$ ions. The extended long-wavelength structure of the non-uniformly broadened R-line is assigned to a vibronic tail of the pure electronic $^2E(^2G)$→$^4A_2(^4F)$ transitions [4].

Figure 8 shows the PL spectra of the Al$_{2-x}$Cr$_x$O$_3$ samples with different mole fractions x and undergone a heat-treatment at 900°C, excited by 556 nm wavelength. It is seen from Fig. 8, with increasing the mole fraction x, the emission bands are broadened and shifted towards the long-wavelength side. As can be seen from table 1, with increasing the mole fraction x, the lattice constants of the γ-Al$_2$O$_3$ nanocrystals slightly increase, which is associated with a decrease in the ligand field located of the

http://www.sssj.org/ejssnt (J-Stage: http://www.jstage.jst.go.jp/browse/ejssnt/)
heat-treated at 1300°C consists of two strong lines at 691.6 and 693.2 nm and weakly lines at 659, 699, 674, 678, 700, 706, 712, and 725 nm. Two lines at 691.6 (noted by R₁-line) and 693.2 nm (R₂-line) are well-known due to the $E(2E(2G)) \rightarrow 4A_2(4F)$ and $2X(2E(2G)) \rightarrow 4A_2(4F)$ transitions within the Cr$^{3+}$ ions in the α-Al$_2$O$_3$ octahedral crystal field, respectively [4–6]. Figure 10 shows the PLE spectra of the Al$_{2-x}$Cr$_x$O$_3$ samples with $x = 0.005$, heat-treated at 1300°C, recorded at all the emission peaks shown in Fig. 9. As seen from the Fig. 10, the PLE spectra of sample did not depend on the recorded wavelengths. This result shows that the lines at 659, 699, 674, 678, 700, 706, 712, and 725 nm are phonon-sidebands of the lines R₁ and R₂. The PLE spectra consist of two strong broad absorption bands with peak positions at around 399 and 556 nm, corresponding to spin-allowed $4A_2(4F) \rightarrow 4T_1(4P)$ and $4A_2(4F) \rightarrow 4T_2(4F)$ transitions of the Cr$^{3+}$ ions on the octahedral sites of α-Al$_2$O$_3$ [5, 6]. Beside, a weak sharp peak at 692 nm corresponding to the transitions from the basic level $4A_2(4F)$ to the lowest excited level $2E(2G)$, is also observed.

IV. CONCLUSION

The effect of dopant concentration and heat-treating temperature on the structural and optical properties of the synthesized samples has been studied. The results showed that the structure, the size and the optical properties of the Al$_{2-x}$Cr$_x$O$_3$ crystallites strongly depended on the mole fraction x and the heating temperature. At low heating temperatures, the samples with the low mole fraction x exhibit the γ-Al$_2$O$_3$ phase and the emission spectra consist of a broad asymmetric peak with the maximum at 691 nm corresponding to the $E(2E(2G)) \rightarrow 4A_2(4F)$ transitions within the Cr$^{3+}$ ions in the octahedral sites of the γ-Al$_2$O$_3$ and a vibronic tail of the pure electronic $2E(2G) \rightarrow 4A_2(4F)$ transitions. With the high mole fraction x, the synthesized samples consist of the α-Al$_2$O$_3$ and Cr$_2$O$_3$ phases. By increasing the mole fraction x, the emission bands, which originate from the $4T_2(4F) \rightarrow 4A_2(4F)$ transitions within the Cr$^{3+}$ ions in the octahedral sites of the γ-Al$_2$O$_3$ phase, are broadened and shifted towards the long-wavelength side. At high heating temperatures, all the synthesized samples are α-Al$_2$O$_3$ single phase and the emission spectra consist of mainly lines at 691.6 and 693.2 nm corresponding to the $E(2E(2G)) \rightarrow 4A_2(4F)$ and $2X(2E(2G)) \rightarrow 4A_2(4F)$ transitions of the Cr$^{3+}$ ions in the α-Al$_2$O$_3$ octahedral crystal field.

TABLE II: The dependence of the d_{012} and lattice constants on the mole fraction x with different heat-treatment temperatures.

<table>
<thead>
<tr>
<th>x</th>
<th>d_{012} (Å)</th>
<th>d_{004} (Å)</th>
<th>$a = b$ (Å)</th>
<th>c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>3.500</td>
<td>2.563</td>
<td>4.15</td>
<td>13.04</td>
</tr>
<tr>
<td>0.1</td>
<td>3.504</td>
<td>2.566</td>
<td>4.15</td>
<td>13.05</td>
</tr>
<tr>
<td>0.25</td>
<td>3.506</td>
<td>2.566</td>
<td>4.16</td>
<td>13.05</td>
</tr>
<tr>
<td>0.3</td>
<td>3.509</td>
<td>2.569</td>
<td>4.16</td>
<td>13.06</td>
</tr>
</tbody>
</table>

FIG. 10: PLE spectra of the Al$_{2-x}$Cr$_x$O$_3$ samples with $x = 0.005$, heat-treated at 1300°C, recorded at all the emission peaks shown in Fig. 9.