On the Smectic Ordering at Very Thin System ---A Parallel Aligned Model---

Mamoru YAMASHITA and Toshikuni MIYAZAKI
(Department of Physics Engineering, Mie University, Kamihamata, Tsu 514-8507
DENSO CORPORATION, Syowa-cho 1-1, Kariya, Aichi 448-8661)

The effect of the wall to the smectic layer ordering is studies at thin liquid crystalline system by
generalizing the McMillan theory on smectics. Every order of smectic layers is proved not to
vanish, and a crossover from a long range order to a surface sustained one is shown to occur near a
bulk transition temperature which is explained as the critical behaviour even at such thin system.
The dependence of transition temperature between smectic phase and nematic one at the parallel
aligned case is obtained, where the transition temperature is determined from the global behaviour
of the order averaged over the whole system.

液膜相に対する壁面の効果としてはもっぱら配向秩序に注意が払われているが、ミクロといえるほどの薄い体系では壁面は一次元結晶であるスメクティック相の層形成に対する対称破りポテンシャルとして働く。実際、平行配向のスメクティックA相(SmA)の
低温側に垂直配向のスメクティックA相(SmAll)が現実させることが既にGay-Berne模型
を用いたMDシミュレーションで示されている②。またネマティック相に対するフレデリックス転移のように横電場に対する応答と履歴の研究からもSmAの安定性が確認され
ている③。垂直配向はSmAを安定化させるのでその場合SmAは現われない。すなわち垂直配向の体系は層形成の典型模型であると言える。本講演ではSmAを理論的に解き明かすためにMcMillan理論④を拡張して垂直配向の場合を論じる。

McMillan理論のハミルトニアンは分子場理論では次のように書かれる。

\[H = -V_0 \sum_{i,j} \left(1 + \alpha \cos \frac{2\pi x_j}{d} \cos \frac{2\pi x_i}{d} \right) P_i(\cos \theta_i) P_j(\cos \theta_j) \] (1)

簡単のため、完全配向の場合を考えるとハミルトニアンは次のものに帰着される。

\[H_p = -V_1 \sum_{i} \cos \frac{2\pi x_i}{d} \cos \frac{2\pi x_i}{d}, \quad (V_1 = V_0 \alpha) \] (2)

これは古典XY模型の分子場ハミルトニアンに等しい。\(n\)番目の層の秩序パラメータを\(\sigma_n(=<\cos \frac{2\pi x_n}{d}>)_n\)すると、\(\sigma_n\)にたいする階層化は次のように得られる。

\[\sigma_n = J \left(\frac{V_1}{kBT} \right) (2f_{n+1} \sigma_n + \sigma_{n+1} + \sigma_{n-1}) \] (3)

式(3)で\(J(x) = I_1(x)/I_0(x)\)、\(I_1(x)\)はj次変形ベッセル関数、\(T\)は温度、\(f_n\)は層内の配位数の半分である。パルクでの転移温度\(T_c\)は\(f_{n+1}\)で与えられる。式(3)を完全配向の条件下
(σ₀ = σₙ₊₁ = 1) で論じる。

－結果－
[I] 有限温度ではいかなるσₙも零にはならないことが式(3)から証明される。

式の数値解からσₙの様子を図1に示す (N = 20, T = 3.5(○), 4.0(△), 4.52(●), 5.0(*)）。
いずれも常識に違わず下に凸であることが分かる。

[II] \[\bar{\sigma} \equiv \frac{\Sigma_n \sigma_n}{N} \] (N = 8 (a), 20 (b), 40(c)) とN = 20でのσ₁のT依存性を図2に示す。

\[T = T_c' \] (4) 近傍でクロスオーバーが見られる。

[III] バルクの臨界点近傍で式(3)より次式が得られる。

\[\sigma_n^3 + 2t \sigma_n - 2h_n = 0, \quad (t = (T - T_c')) T_c' \cdot h_n = \sigma_n + 1 + \sigma_n - 2 \sigma_n \] (4)

式(4)から通常のスケーリング関係, \(\sigma_n \sim h^{1/3} (\frac{t}{h_n^{2/3}}) \) が得られるが、また同時に変曲点の条件, \(\frac{\partial^2 \sigma_n}{\partial T^2} = 0 \), から \(h_n = \text{const.} \) のもとで \(t = 0 \) (\(T = T_c' \)) が得られる。即ち図2の変曲点の振舞が説明される。

[IV] 転移温度を適当に定義して厚さ依存性を求める（図3, T_cで \(\bar{\sigma} = 0.05 \)）。

