Properties of the LC alignment patterning by the azimuthal anchoring control
Rumiko Yamaguchi and Susumu Sato

Department of Electrical and Electronic Engineering, Akita University, Akita, 010-8502

The patterned TN LC cell is assembled with uniformly rubbed PVCi and PI substrates. The anchoring energy of the rubbed PVCi substrate is controlled by irradiating with the nonpolarized UV light and the twist angle in the LC cell is varied. The relationship between the twist angle and the anchoring energy is theoretically and experimentally discussed with some parameters in the torque balance equation.

はじめに
ディスプレイにおける広視野角化や、グレーティング等の光学素子への応用において、液晶ディスプレイの配向パターン化技術は非常に重要である。これまで、配向パターン化の形成は、ラピング処理または光配向処理により配向膜における容易軸方向を制御することで実現されてきた。これに対し、我々は新規な配向パターン化法として、方位角アンカリングカを制御することによりねじれ角の異なる領域を形成する技術を提案した。1 本研究では、方位角アンカリングカとねじれ角の関係において、液晶セルの種々のパラメータが及ぼす影響を、トルクバランス方程式において考察するとともに、液晶セルにおけるパターン化を行った結果について報告する。

トルクバランス方程式における考察
片側の基板をストロングアンカリング（W_{2γ}∞）、もう一方基板のアンカリングを有限なものとした液晶素子の自由エネルギー

\[ F = F_{\text{bulk}} + F_{\text{surface}} = \frac{1}{2} K_{22} (\Phi - 2\pi d / p)^2 / d + \frac{1}{2} W_{\alpha} \sin^2(\Delta \Phi) \]

が最小なる条件は、

\[ F_{\text{surface}} = F_{\text{bulk}}, \]

\[ K_{22} (\Phi - 2\pi d / p) / d = \frac{1}{2} W_{\alpha} \sin(2(\Phi - \Phi_0)) \]

である。上下基板の容易軸間の角度 \( \Phi_0 \)が90°、カイラルビッチ \( p \)が無限大のとき、(2)式を満たすアンカリングカ \( W_{\alpha} \)と実際のねじれ角 \( \Phi \)の関係を、セラ厚 \( d \)をパラメータとして算出した。Fig.1 に示すとおり、アンカリングが減少し \( K_{22} / d \)の値に近くなるにつれ、ねじれ角は急激に減少し、\( W_{\alpha} < K_{22} / d \)ではねじれ角がゼロとなることがわかる。また、約2 枚のアンカリング変化によって、ねじれ角が0〜90°の間で制御可能であることがわかる。次に、\( \Phi \)をパラレラマーとしたときの計算結果をFig.2 に示す。\( \Phi \)が90°未満では、弱アンカリング（\( W_{\alpha} < K_{22} / d \)、ex. 10⁻ Nunm)配向膜上においてもねじれ角はゼロならず、またこのとき \( \Phi \)が小さいセルほどねじれ角は大きいことがわかる。さらに、ピッチ長をパラメーターとしたときのアンカリングカと実際のねじれ角の計算結果をFig.3 に示す。

実験
方位角アンカリングカを変化させる方法として、ポリビニルシナメート(PVCi)に無偏光のUV光を照射し、二量化または異性化によってアンカリングカが増加する現象を用いた。2 ラピングを施したPVCi膜にフォトマスクを介して無偏光UV光(365 nm、30 mW/cm²)を5分間照射した。液は5CBを用いた。対向基板にPIのラピング配向膜を用い、\( \Phi \)を90°として液晶セルを作製した。UV未照射の部分ではPIのラピング方向に平行なホモジニアス配向が得られ、UV照射部ではTN配向が得られた(Fig.4)。また、UV照射量によりアンカリングカを可変し、中間のねじれ角の制御が可能であることを確認した。

次に、\( \Phi_0 \)を45°としてセルを作製した。セル厚が10.7μmのとき、UV照射部のねじれ角は44.0°、
UV未照射部では、6.2°であった。従って、(2)式の関係からPVClinのアンカリング力はUV照射、未照射部でそれぞれ約1.6×10⁻⁵ N/m、8.3×10⁻⁸ N/mと算出した。弱アンカリング膜上でのねじれ角は、カイラル液晶を用いて制御可能である。カイラルピッチが95 μmの液晶を用い、パラレルピッキング（φ = 90°）の素子を作製した(Fig. 5)。10.6 μm厚のセルでは、自発ねじれが40.2°となるのに対し、弱アンカリングのUV未照射部では約48°であった。このねじれ角は、(2)式の関係から求められる値（46.5°）とほぼ等しいものである。また、UV照射部のねじれ角89°であった。

きって
方位角アンカリング力を制御することによりねじれ角の異なる領域を形成する技術において、セルのパラメータが及ぼす影響を検討した。これらの結果から、このパターニング法によって種々のねじれ角の組合せが可能であることが明らかとなり、多様な液晶グレーティングやマイクロポーラライザレイ等の作製が容易に行えることが示唆された。

2) 2001年液討予稿集 山口他, p. 247.