モノドメイン液晶ゲルの体積相転移挙動
（京大院工） ○新井裕子・浦山健治・瀧川敏算

Volume Phase Transition of Monodomain Liquid Crystalline Gels
Yuko ARAI, Kenji URAYAMA, and Toshikazu TAKIGAWA
Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, JAPAN

We have investigated the equilibrium swelling and phase behavior of monodomain liquid crystalline (LC) polymer networks swollen in nematic or isotropic (non-nematogenic) solvents. The LC gels shows a large volume decrease accompanying an appreciable anisotropic shape change at the isotropic-to-nematic transition temperature of the gels. The experimental swelling-temperature curves are compared with the prediction of a mean field theory for monodomain nematic gels. The theory substantially describes the characteristics of swelling and phase behavior observed.

【緒言】
我々はこれまでに、低分子液晶溶媒または等方性（非液晶性）溶液媒中で膨満した液晶ゲルがゲル内のヘマチック転移に伴って不連続に収縮すること（体積相転移）を明らかにした。この液晶ゲルは等方相で架橋されたため、ヘマチック相ではポリドメイン構造を示し、膨満挙動は等方的であった。本研究では、液晶モノマーがヘマチック相で巨視的に配向した状態で架橋することによりモノドメイン液晶ゲルを作製し、液晶溶媒および等方性溶媒中での相挙動と異方的な膨満挙動を調べた。また、実験結果を説明する理論的考察を行った。

【実験】
液晶モノマーI／低分子液晶 II = 1／1（モル比）、架橋剤（1,6-hexanediol diacrylate）、光重合開始剤（Irgacure 784 ; Ciba speciality chemicals（株）より提供）の混合物を製造した。この混合物をポリイミド配向膜を有するガスセル（セルギャップ50μm）に封入し、混合物がモノドメイン液晶相を示す温度で、526nmの光を照射し光重合を行った。セルから薄膜状のゲルを取り出し、ジクロロメタンで洗浄後、Iおよび未反応物を取り除き、乾燥させた後、低分子液晶溶媒（5CB, III）もしくは等方性溶液（フタル酸ジブチル（DBP）、フタル酸ジ-n-アミル（DAP））中に浸漬し膨満させた。偏光顕微鏡を用いて、平衡膨満ゲルの液晶相の配向方向（ξ）とその垂直方向（η）の長さ、平衡膨満度Q (= V/V0 = xy²/(xa ya³) : x0, y0 乾燥状態での等方相の試料の各方向の長さ) および相挙動を温度を変数として調べた。

【結果】
乾燥状態の液晶ゲルのヘマチック相を直交ニコル下の偏光顕微鏡で観察したところ、試料ステージを45°回転させるたびに若干カタクリミが現れ、作製した液晶ゲルはラビング方向に配向したモノドメインヘマチック相を示すことがわかった。
Fig. 2 に降溫過程において得られたモノドメイン液晶ゲルの DBP における各方向の軸比 \(\alpha_x, \alpha_y \) およびその比 \(\frac{\alpha_x}{\alpha_y} \)、および膨潤度 \(Q \) の温度依存性を示す。\(\alpha_x = \sin \theta_x, \alpha_y = \sin \theta_y \) であり、\(\theta_x, \theta_y \) は60℃（等方相）での各方向の長さである。

ゲルが等方相である温度領域（\(T > 31 \)℃）では、温度の低下に伴い \(Q \) はやや減少したが、収縮は等方的（\(\alpha_x/\alpha_y = 1 \)）であった。30℃近傍でゲルは連続的にモノドメインネマチック相に転移した。また、同温度領域で、\(Q \) は連続的に大きく減少するとともに、\(\alpha_x/\alpha_y > 1 \) となり、液晶相の配向方向に伸びた形状の異方的な収縮を示した。さらに温度を低下させると、\(Q \) はほとんど変わらないが形状異方性（\(\alpha_x/\alpha_y \)）はさらに増加し一定になった。ネマチック相では膨潤度は等方相よりも減少しているにもかかわらず、配向方向の長さは等方相とほぼ同じもしくはやや増加しており、収縮は配向と垂直方向で起こることがわかった。また、昇温過程においても同様の結果が得られ、温度履歴の影響はほとんど見られなかった。

Fig. 3 に、降溫過程において得られたモノドメイン液晶ゲルの SCB 中における \(\alpha_x, \alpha_y, \alpha_x/\alpha_y \)、および \(Q \) の温度依存性を示す。ゲル内外部共に等方相である \(T > 51 \)℃では \(Q \) は温度の低下と共にわずかに減少するが温度依存性を示すが、この領域での収縮は等方的であった。50℃近傍でゲルはモノドメインネマチック相に連続的に転移し、\(Q \) も連続的に大きく減少した。また、\(\alpha_y/\alpha_x \) > 1 となり、配向方向に伸びた形状の収縮を示した。ゲル内部がネマチック相でゲル外部が等方相である \(T_{N1}^* < T < T_{N1}^0 \)（\(T_{N1}^* \)：純溶媒の相転移温度）では、\(\alpha_x, \alpha_y \)、および \(Q \) は温度が低下するにつれてさらに増加する傾向的な挙動を示すが、形状異方性（\(\alpha_x/\alpha_y \)）は単調に増加した。\(T = T_{N1}^0 \) でゲル外部の液晶溶媒のネマチック転移が起こり、\(Q \) は \(T > T_{N1}^0 \) における値とほぼ同程度になった。ゲル内外ともにネマチック相である \(T < T_{N1}^* \) においても、温度低下とともに形状異方性は大きくなるが、\(\alpha_x \) と \(\alpha_y \) が共に変化する \(T_{N1}^* < T < T_{N1}^0 \) の領域と比べると、\(\alpha_y \) が一定のまま \(\alpha_x \) のみが増大するという差異が見られた。降温および昇温過程において挙動に有意な差はなく温度履歴の影響はほとんど見られなかった。

実験結果の理論的考察については当日報告する。