Photoresponsive Supramolecules: Fibers and Vesicles Formed by Self-assembled Azobenzene-Containing Amphiphilic Phosphates

Su Ma¹, Tomonari Ogata³, Sunnam Kim¹, Natsuki SASADE⁴, Kiyoshi Kanie⁴, Atsushi Muramatsu⁴ and Seiji Kurihara¹,²,⁵ *

¹) Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan, ²) Kumamoto Institute for Photo-Electro Organics (PHOENICS), 3-31-38 Higashimachi, Higashi-ku, Kumamoto, 862-0901, Japan, ³) Innovative Collaboration Organization, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan, ⁴) Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8677, Japan, ⁵) JST-CREST, K’s Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan

Lyotropic liquid crystal (LLC), one of the liquid crystalline phases, commonly was used to describe materials composed of amphiphilic molecules and solvents. The amphiphilic molecules comprise a hydrophilic head group and a hydrophobic group, whose typical example is phospholipid. In recent years, LLC, as a form of supramolecule, has attracted many researchers’ attention owing to their excellent potential as drug delivery systems [1-2]. In this work, stimuli-responsive azobenzene-containing amphiphilic phosphate derivatives (X-Az-Y-6-PC), showing a LLC phase in water, were designed and prepared. Then, by mixing 2 different kinds of X-Az-Y-6-PC, vesicles or fibers were obtained. Finally, the effect of light on self-assembled supramolecules was investigated.

Figure 1. The molecular structure of azobenzene-containing amphiphilic phosphates with various functional groups (X-Az-Y-6-PC): [X,Y] = [CH₃O, O], [O₂N, O], [O₂N, N(CH₃)]

Synthesis of azobenzene-containing amphiphilic phosphates
Azobenzene-containing amphiphilic phosphates: CH₃O-Az-O-6-PC, O₂N-Az-O-6-PC and O₂N-Az-N(CH₃)-6-PC were successfully synthesized [³], respectively. Typical synthetic route was shown in Fig. 2.

Figure 2. Typical synthetic route of azobenzene-containing amphiphilic phosphates (X-Az-Y-6-PC)

Effect of the molecular structure on the formation of supramolecules
Supramolecular assemblies as fibers and vesicles formed from spontaneous self-assembly of
azobenzene-containing amphiphilic phosphates aqueous solution were explored. As shown in Fig. 3, combination of \(\text{CH}_3\text{O-Az-O-6-PC} \) and \(\text{O}_2\text{N-Az-N(CH}_3\text{)_6-PC} \) led to aggregation of fibers, and combination of \(\text{CH}_3\text{O-Az-O-6-PC} \) and \(\text{O}_2\text{N-Az-O-6-PC} \) led to aggregation of vesicles in the progress of electrostatic interaction.

Figure 3. The formation of supramolecules: A. fibers made by \(\text{CH}_3\text{O-Az-O-6-PC} \) (5mM) and \(\text{O}_2\text{N-Az-N(CH}_3\text{)_6-PC} \) (5mM) (taken by microscope); B. vesicles made by \(\text{CH}_3\text{O-Az-O-6-PC} \) (2mM) and \(\text{O}_2\text{N-Az-O-6-PC} \) (2mM) (taken by microscope); C and D. SEM of fibers made by \(\text{CH}_3\text{O-Az-O-6-PC} \) (5mM) and \(\text{O}_2\text{N-Az-N(CH}_3\text{)_6-PC} \) (5mM);

Light-stimuli-responsive behavior of the supramolecules

The irradiation of UV and visible light were carried out to study their light-stimulus-responsive behavior of the supramolecules. The irreversible disassembly of fibers occurred upon UV light, while the reversible disassembly and reassembly of vesicles could be induced by UV and visible light.

Literature

Acknowledgements

We are grateful to the financial support by CREST from JST, Japan. This work was also performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices"