1J03

4-{β-(4-アルキルシクロヘキシル)}エチルシクロヘキサン–1-カルボン酸エステルの合成と性質
(大日本インキ) 髙津晴義・竹内清文・佐藤久人

Synthesis and Some Physical Properties of 4-{β-(4-Alkylcyclohexyl)}ethylcyclohexanecarboxylates

Haruyoshi TAKATSU, Kiyofumi TAKEUCHI, Hisato SATO
Dainippon Ink & Chemicals, Inc., 3-35-58, Sakashita, Itabashi-ku, Tokyo 174

1. 稀言

液晶分子において、未端基がナチュラル液晶の転移温度、エンタルピー、粘度、Δn、誘電率等の諸特性に及ぼす影響を解明することを目的として、基盤的考察と各種用途に応じた液晶化合物を分子設計する上で重要なもので、我々が、第8回液晶討論会において、1-シクロヘキシル-2-(α-ハロビフェニル)エタンの末端基として、ハロゲン基が液晶の諸特性に及ぼす影響を検討した。その結果、この化合物の粘度の対数と末端ハロゲン基のvan der Waals半径の3乗、及びΔnとvander Waals半径に直接関係を見出し、これらの関係を他の化合物で確認するため、さらに末端のアルキル基、あるいは化合物の骨格と液晶の重合物の影響を検討する目的で4-{β-(4-アルキルシクロヘキシル)}エチルシクロヘキサンカルボン酸

\[
R\cdot\begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H}\end{array}\cdot\text{COOH} \quad (I) \quad R=\text{n-Alkyl}
\]

から誘導されるエステルを合成し、その転移温度、エンタルピー、エントロピー、粘度、Δnを測定した。

2. 実験

(1)合成

式(1)のカルボン酸及びそのエステルを下記の合成過程により合成し、生成物はカリカプト及び再結晶により精製精製した。目的のエステルの純度はガスクロソトグラフ (Dexsil 410 GC) と液体クロマトグラフ (SS-10-ODS) によって確認し、同定はNMR及びマススペクトルによって行なかった。

\[
\begin{align*}
R\cdot\begin{array}{c}
\text{H} \\ \text{CH}_2\text{COCl}\end{array}\cdot\begin{array}{c}
\text{H} \\ \text{CH}_2\text{CO} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CO} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \\
R\cdot\begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \\
R\cdot\begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \\
R\cdot\begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \quad & \quad \begin{array}{c}
\text{H} \\ \text{CH}_2\text{CH}_2\text{H} \end{array} \\
\end{align*}
\]

たかつはみよし・たけうちきよふみ・さとうあさひ
(2) 物性 酸素温度、エンタルピーは偏光顕微鏡付融点測定装置及びDSCを用いて測定した。粘度、△HはECH (R=H-COO-OR') と PCH (R=H-CO-CN) の混合溶液 (Tm=54.5℃、η₂₀°C = 21 c.p.、△H = 0.0917) に O から 40 mol% の数種類の物質を目的化合物を混合し、それぞれの物性値から外挿法によって求めた。粘度は王塩回転粘度計で、△Hはコンベンツルを用いた偏光顕微鏡で測定した。

3. 結果と考察

式(I)のカルボン酸のエステルの転移温度、エンタルピーを Table I に示す。

TABLE I

<table>
<thead>
<tr>
<th>R</th>
<th>Y</th>
<th>転移温度 (℃)</th>
<th>ΔH (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>C₃H₇</td>
<td>-O</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>C₃H₇</td>
<td>-O</td>
<td>81</td>
<td>-</td>
</tr>
<tr>
<td>C₃H₇</td>
<td>-OCl</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>C₃H₇</td>
<td>-OBr</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>C₂H₅</td>
<td>-OH</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>C₃H₇</td>
<td>-S(Ph)</td>
<td>128</td>
<td>131</td>
</tr>
<tr>
<td>C₃H₇</td>
<td>-C₃H₇</td>
<td>142</td>
<td>145</td>
</tr>
<tr>
<td>C₃H₇</td>
<td>-OCH₂F</td>
<td>88</td>
<td>159</td>
</tr>
</tbody>
</table>

式(II)の化合物において、R=C₃H₇ の場合、X = H、F、Cl、Br いずれの化合物も晶型相を示し、N → I は H → F → Cl → Br の順で上昇した。結晶から晶型相までの転移エンタルピーは式(II)の化合物の場合、ハロゲン基が直して 5〜6 kcal/mol で一定であった。これに対し、アルキル基を末梢基としても式(III)、式(IV)の化合物の場合は、非常に小さいことが明らかとなった。これのことから、末梢にアルキル基をもつ化合物はプロトン、ハロゲン基をもつ化合物と異なる結晶構造をとるのではないと考えられる。外挿法によって求めた式(IV)の化合物の粘度、△Hを Table III に示す。これらの粘度の対数はハロゲン基の van der Waals 半径の 3 拡はほぼ直線関係を示した。このことから以下の 2 式を帰因するものと思われる。

\[\eta \propto \exp \left(\frac{4G}{RT} \right) \]

\[4G = P_o V + a u \]

△H は末梢ハロゲン基の van der Waals 半径が大きくなると直線的に増加した。このことから△H は分子における交差部分の割合を指す関係があるのではないかと思われる。

<table>
<thead>
<tr>
<th>X</th>
<th>η₂₀°C(c.p.)</th>
<th>Δn (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>27.0</td>
<td>0.092</td>
</tr>
<tr>
<td>F</td>
<td>29.1</td>
<td>0.102</td>
</tr>
<tr>
<td>Cl</td>
<td>38.5</td>
<td>0.122</td>
</tr>
<tr>
<td>Br</td>
<td>45.2</td>
<td>0.126</td>
</tr>
</tbody>
</table>