Interaction of Some Lewis Acids with the Oxide-Bridge of (µ-Oxo)di(µ-acetato)diruthenium (III, III) Complexes and Its Electrochemical Consequence

Tomohiko INOMATA, Keisuke UMAKOSHI, and Yoichi SASAKI*

Division of Chemistry, Graduate School of Science, Hokkaido University (Kita-ku, Sapporo 060-0810, Japan)

Received February 1, 1999; Accepted March 2, 1999

Interaction of some Lewis acids to the oxide bridge of [Ru₂(µ-O)(µ-CH₃COO)₂(2,2’-bipyridine)₂(L)₂]²⁺ (L = 1-methylimidazole (I), pyridine (2)) and its electrochemical consequence were examined. The complexes themselves show reversible Ru₂(II, III / III, IV) and Ru₂(II, III / III, III) processes and an irreversible Ru₂(II, II / II, III) process in acetonitrile (0.1 M n-Bu₄NPF₆) at 0.78 (0.95) (E₁/₂), −0.55 (−0.39) (E₁/₂) and −1.16 (−1.09) V (Epa) vs. Ag/AgCl, respectively, for I (data in parentheses are for 2). On addition of BF₃ and Al³⁺, all the redox potentials shift to the positive direction. Addition of Li⁺ and Na⁺ causes the shift of only the most negative E₁/₂ to overlap with the middle one to show an apparent one-step two-electron process Ru₂(II, II / III, III) at −0.55 V. BF₃ and Al³⁺ interact with the oxide bridge of the complexes at the oxidation states Ru₂(III, III), (II, III) and (II, II) while the alkali metal ions do only at the Ru₂(II, II) state.

Key Words: Diruthenium µ-Oxo Complexes, Lewis Acid Interaction, Cyclic Voltammetry

1 Introduction

In our recent paper, we have demonstrated that the protonation at the oxide bridge of the o xo-bridged diruthenium(III, III) complexes, [Ru₂(µ-O)(µ-CH₃COO)₂(bpy)₂(L)₂]²⁺ (L = 1-methylimidazole (Meim) (I), pyridine (py) (2)) (Scheme 1), causes significant positive shift of the reduction potentials of the Ru₂(II, III) / (III, III) and Ru₂(II, II) / (II, III) processes in acetonitrile.¹ The protonation was attained by adding a strong proton donor, p-toluensulfonic acid (Hpts), to the solution. Extent of the shifts in the case of I amounts to 0.82 (from −0.55 to +0.27 V vs. Ag/AgCl) and 0.89 V (from −1.16 to −0.27 V), respectively.¹ Formation of the hydroxo bridge at the Ru₂(III, III) state on addition of the acid can be monitored by UV-vis and NMR spectra also.¹ It was subsequently of great interest to us to find whether other Lewis acids behave similarly as protons to cause a significant shift of the redox potentials. To our knowledge, no report showing unambiguously that metal-centered redox reactions are coupled with Lewis acid adduct formation at a ligand Lewis base center of metal complexes (oxide bridge in the present case), has appeared previously. In this communication, we wish to present our preliminary results on the interaction of some Lewis acids such as BF₃, Al³⁺, Li⁺ and Na⁺ with 1 or 2 in acetonitrile.

2 Experimental

Hexafluorophosphate salts of the diruthenium(III) complexes, 1 and 2, were prepared as described in the literatures.¹–⁶ UV-visible spectra were recorded on a Hitachi U3410 and a JASCO Ubest 30 spectrophotometer. IR spectra were recorded on a Hitachi 270-30 infrared spectrophotometer. The ¹H NMR spectra were obtained by a JEOL JNM-EX 270 FT-NMR spectrometer. All peaks were referenced to the methyl signals of TMS at δ = 0. Cyclic voltammetry was performed with a Hokuto Denko HA-501G potentiostat with an HB-105 function generator and a BAS CV-50W voltammetric analyzer with the scan rate of 50 mV/sec. The working and the counter electrodes were a glassy-carbon disk (3 mm in diameter) and a platinum wire, respectively. The reference electrode was Ag/AgCl against which the half-wave potential of Fe²⁺ / Fe (E½(Fe²⁺ / Fe) (Fc = ferrocene) was 0.43 V.

Scheme 1 Structures of [Ru₂(µ-O)(µ-CH₃COO)₂(bpy)₂(L)₂]²⁺.
3 Results and Discussion

3.1 Interaction with BF₃

BF₃ was added to the acetonitrile solution of 2 quantitatively as a form of Et₂O·BF₃ by using the syringe technique. Figure 1 shows the UV-vis spectral change on successive addition of BF₃. The spectrum changed on increasing amount of BF₃ with isosbestic points accompanying with a new peak appearing at 520 nm (the μ-hydroxo complex shows the peak at ca. 525 nm). The change was almost completed with ca. 3 eq of BF₃ at the complex concentration of 1.0 mM. The final spectrum was similar to that of the hydroxo-bridged Ru₆(III, III) complex. The spectral change must be ascribed to the attachment of BF₃ to the oxide bridge. The BF₃ adduct formation is more favorable than the protonation since 10 eq of Hpts were required for the complete formation of the μ-hydroxo complex at the similar complex concentration.² The spectral change was almost completed with 6 eq of BF₃ in CH₂Cl₂.

The IH NMR spectrum of 2 in the presence of BF₃ in CD₃CN showed somewhat broader ligand signals at wider frequency range as observed in the case of the addition of Hpts. For example, the 6,6'-proton signals of bpy shifted from ca. 6 to ca. −2 ppm. Change in the IH NMR spectrum is also taken as an evidence for the adduct formation with BF₃.

\[
[Ru₂(μ-O)(μ-CH₂COO)]_{3(bpy)}_{3(py)}^{2+} + BF₃ → [Ru₂(μ-OBF₃)(μ-CH₂COO)]_{3(bpy)}_{3(py)}^{2+}
\]

(1)

Figure 2 shows the cyclic voltammogram of 2 in acetonitrile with 0.1 M n-Bu₄NPF₆ in the presence of BF₃. With 0.5 eq of BF₃, two reduction waves of Ru₆(II, II / II, III) and Ru₆(III / III, III) shifted to positive potentials. On further addition of BF₃, further shifts of the waves were observed with some deterioration of their reversibility. The new waves observed at one equivalent or more BF₃ should be assigned to the BF₃ adduct. The extent of the shift (1.1 V) of the Ru₆(II, II / II, III) potential was even larger than that for the protonation (0.99 V).² The initial shift which was completed with only 0.5 eq of BF₃ may be explained by partial contributions of the protons produced by the interaction of contaminated H₂O with BF₃.

\[
H₂O + BF₃ → BF₃(OH) + H^+ \text{ and further} \]

deprotonation (2)

\[
[Ru₂(μ-O)(μ-CH₂COO)]_{3(bpy)}_{3(py)}^{n+} + H^+ → [Ru₂(μ-OH)(μ-CH₂COO)]_{3(bpy)}_{3(py)}^{(n+1)+} \] (n = 0, 1) (3)

In the presence of one equivalent of BF₃, the Ru₆(III, III / III, IV) wave was irreversible probably because of the slow dissociation of BF₃ from the oxide bridge after the oxidation to Ru₆(III, IV). When excess of (C₂H₅)₂O was added, the oxidation wave showed improved reversibility as (C₂H₅)₂O could assist the dissociation of BF₃.

Attempts to isolate the BF₃ adduct of 2 gave a reddish violet solid, but its unequivocal characterization has not been successful so far. A BF₃ adduct of a mononuclear rhenium(V) complex, [ReO(OBF₃)₂(Meim)₄]⁺, was X-ray structurally characterized recently.⁷⁻⁸

3.2 Interaction with Al³⁺

Al(CIO₄)₃·(H₂O)₉ was used as a source of Al³⁺. On addition of Al³⁺ to 1 in acetonitrile, the UV-vis absorption spectrum showed a similar change as in the case of BF₃ addition. The new peak appeared at

Fig. 1 Change in the visible absorption spectra of 2 on addition of BF₃ in acetonitrile.

Fig. 2 Cyclic voltammograms of 2 in acetonitrile (0.1 M n-Bu₄NPF₆). (a) Without any additive, (b) 0.5 eq of BF₃ added, (c) 1.0 eq of BF₃ added, (d) excess of Et₂O was added after the addition of 2 eq of BF₃.
ca. 500 nm. One equivalent of Al³⁺ was sufficient to complete the change. The ¹H NMR spectrum also showed the similar trend as that observed for the addition of BF₃. It was concluded that Al³⁺ also interacts with the oxide bridge at the Ru₂(III, III) state.

\[\text{Ru}_2(\mu-O)(\mu-\text{CH}_3\text{COO})_2(bpy)(\text{Meim})_2]^{2+} + \]
\[\text{Al}(\text{H}_2\text{O})_n]^{3+} \rightarrow \left[\text{Ru}_2(\mu-\text{Al}(\mu-\text{H}_2\text{O})_n]^{3+} + \right] \]
\[(6-n)\text{H}_2\text{O} \] (4)

Cyclic voltammogram of 1 in acetonitrile (0.1 M n-Bu₄NPF₆) changed significantly on addition of Al³⁺ (Fig. 3). With 1 eq of Al³⁺, all the redox potentials shifted to the positive direction which must be due to the formation of the Al³⁺ adduct. Poor reversibility of the Ru₂(III, III / III, IV) process would indicate the slow dissociation of Al⁺⁺ from the μ-OAl(H₂O)ₙ bridge after the oxidation to the Ru₂(III, IV) state. As in the case of BF₃, the shift with 0.5 eq of Al³⁺ would be at least partly due to protons produced by Al³⁺.

\[\text{Al}(\text{H}_2\text{O})_n]^{3+} \rightarrow \left[\text{Al}(\text{OH})(\text{H}_2\text{O})_n]^{2+} + \text{H}^+ \] (5)

The CVs of 1 in acetonitrile with two supporting electrolytes 0.1 M (n-Bu₄N)ClO₄ and 0.1 M LiClO₄ were different at the negative potential region. A similar CV to that with 0.1 M LiClO₄ was observed when 0.1 M NaClO₄ was used as a supporting electrolyte, indicating that Na⁺ also acts as a Lewis acid during the reduction of 1.

3. 3 Interaction with Li⁺ and Na⁺

Figure 4 shows the CV change on addition of LiClO₄ to the acetonitrile solution of 1 with 1.0 M (n-Bu₄N)ClO₄. In the presence of 10 eq of LiClO₄, the original reduction wave of the Ru₂(II, II / II, III) process completely coalesced with the wave of the Ru₂(III, III / III, III) process. The 2e⁻ nature of the reduction wave was confirmed by the coulometric measurement. The observation is reminiscent the electrochemical behavior recorded when a weak proton donor imidazole was added to the acetonitrile solution of 1. It was concluded that Li⁺ attaches the oxide bridge only at the Ru₂(II, II) state. The redox potential for the Ru₂(II, II / II, III) process coupled with the Li⁺ adduct formation must be > −0.55 V in order to observe the apparent one-step two electron transfer reaction.

\[\text{Ru}_2(\mu-O)(\mu-\text{CH}_3\text{COO})_2(bpy)(\text{Meim})_2]^{2+} + \text{e}^- = \]
\[\left[\text{Ru}_2(\mu-O)(\mu-\text{CH}_3\text{COO})_2(bpy)(\text{Meim})_2]^{+} + \text{Li}^+ \right] \]

E½ = −0.55 V

Poor reversibility of the two-electron step may indicate the slower dissociation rate of Li⁺ from the μ-OLi on reoxidation to Ru₂(II, III). Because of the adduct formation of the μ-oxo bridge with Li⁺ at the lowest oxidation state Ru₂(II, II), the CV’s of 1 in acetonitrile with two supporting electrolytes 0.1 M (n-Bu₄N)ClO₄ and 0.1 M LiClO₄, were different at the negative potential region. A similar CV to that with 0.1 M LiClO₄ was observed when 0.1 M NaClO₄ was used as a supporting electrolyte, indicating that Na⁺ also acts as a Lewis acid during the reduction of 1.

4 Conclusion

Although proton-coupled electron-transfer reactions have been the subject of extensive study, to our
knowledge no explicit example of electron transfer reactions coupled with an adduct formation with a Lewis acid other than proton has been reported. This study provides some examples of such reactions in aprotic solvent acetonitrile. The oxo-bridged diruthenium complexes 1 and 2 show three one-electron redox processes, Ru₂(II, II / II, III), Ru₂(II, III / III, III), and Ru₂(III, III / III, IV). BF₃ and Al³⁺ interact with the oxide bridge at the oxidation states Ru₂(III, III), (II, III) and (II, II) so that all the potentials shift to positive direction. Alkali metal ions, Li⁺ and Na⁺ interact with the oxide bridge only at the Ru₂(II, II) state. Thus only the Ru₂(II, II / II, III) wave shifts to positive potentials to coalesce with the Ru₂(II, III / III, III) wave to show one-step two-electron transfer reaction.

Acknowledgment
Grants-in-Aid No. 09237106 (Priority Areas of 'Electrochemistry of Ordered Interface') from Ministry of Education, Science, Sports and Culture, Japan, are gratefully acknowledged.

References
2) A. Kikuchi, T. Fukumoto, K. Umakoshi, and Y. Sasaki, to be published.