Abstract
The crystal growth process of LiNi1/2Mn3/2O4 was investigated and the octahedral shaped LiNi1/2Mn3/2O4 was successfully synthesized by a low temperature synthesis. The morphology change was accelerated by the spinel-rocksalt phase transformation caused by the oxygen loss. After re-oxidation, high crystalline LiNi1/2Mn3/2O4 with octahedral morphology was obtained. High crystalline LiNi1/2Mn3/2O4 with the particle size of 1–3 µm was obtained by the low temperature synthesis controlling the oxygen partial pressure. High crystalline LiNi1/2Mn3/2O4 crystallized at 850°C exhibited an initial charge capacity of 145 mAh g−1 and an initial discharge capacity of 137 mAh g−1 with a plateau at 4.7 V, and 90% of cycle retention after 100 cycles at 60°C. Microparticulation of high crystalline LiNi1/2Mn3/2O4 enhanced the discharge capacity.