Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542
Comprehensive Papers
Novel Cobalt Complexes as a Dopant for Hole-transporting Material in Perovskite Solar Cells
Nobuko ONOZAWA-KOMATSUZAKITakashi FUNAKITakurou N. MURAKAMISaid KAZAOUIMasayuki CHIKAMATSUKazuhiro SAYAMA
Author information
JOURNAL FREE ACCESS

2017 Volume 85 Issue 5 Pages 226-230

Details
Abstract

We report herein the synthesis of new cobalt complexes tris[2-(1H-pyrazol-1-yl)-4-trifluoromethylpyridine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (Co1), tris[4-(1,1-difluoroethyl)-2-(1H-pyrazol-1-yl)pyridine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (Co2), bis[6-(1H-pyrazol-1-yl)-2,2′-bipyridine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (Co3) and bis[4,4′-dimethyl-6-(1H-pyrazol-1-yl)-2,2′-bipyridine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (Co4), which we use as a dopant to create a hole-transporting material in perovskite solar cells. The addition of Co1Co4 to 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamino)-9,9′-spirobifluorene (spiro-OMeTAD) in chlorobenzene changes the color of the material, which indicates that charge transfer occurs between spiro-OMeTAD and Co1Co4. Devices made from spiro-OMeTAD doped by Co1, Co2, and Co4 perform better than those made from Co3 because of the presence of hydrophobic alkyl groups on the ligands. An overall power conversion efficiency of 14.8% is obtained by using Co2 as a dopant, which exceeds that of tris[2-(1H-pyrazol-1-yl)-4-tert-butylpyridine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (FK209) under the same conditions with spiro-OMeTAD as a hole-transporting material.

Content from these authors
© 2017 The Electrochemical Society of Japan
Previous article Next article
feedback
Top