Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542
Notes
A Needle-type Complementary Metal Oxide Semiconductor-compatible Glucose Fuel Cell Fabricated by Carbon Nanohorns for Biomedical Applications
Md. Zahidul ISLAMNaofumi MATSUYAMAGuowei CHENAtsuki KOBAYASHIYuichi MOMOIKiichi NIITSU
Author information
JOURNALS OPEN ACCESS
Supplementary material

2020 Volume 88 Issue 4 Pages 333-335

Details
Abstract

This study details the development of a solid-state complementary metal-oxide semi-conductor (CMOS)-compatible glucose fuel cell, consisting of various amounts (% wt.) carbon nanohorns (CNHs). It was fabricated on an anode area using one-dimensional (1D) structural CNHs, which express an open-circuit voltage (OCV) of 375 mV, the power density of 8.64 µW/cm2 and current density 23.05 µA/cm2 in 30 mM glucose solution. The cell can be manufactured via a CMOS fabrication process, using materials biocompatible with the human body. The CNHs enhanced the fuel cell due to their high electrocatalytic ability. Here, CNHs were used to fabricate a 17.5 mm × 0.7 mm solid-state CMOS-compatible glucose fuel cell with 375 mV of OCV - the highest reported value for such a cell with an anode area of 16.2 mm × 0.3 mm. The highest power is 0.42 µW. Power generation is the main challenge for developing glucose fuel cells to make the implantable devices that can be used for biomedical applications.

Information related to the author
© The Author(s) 2020. Published by ECSJ.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium provided the original work is properly cited. [DOI: 10.5796/electrochemistry.20-00044].
Uploading "PDF file created by publishers" to institutional repositories or public websites is not permitted by the copyright license agreement.
http://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top