Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542

This article has now been updated. Please use the final version.

Electrochemical and Photoelectrochemical Applications of Plasmonic Metal and Compound Nanoparticles
Hiroyasu NISHI Tetsu TATSUMA
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 19-6-E2679

Details
Abstract

Metal nanoparticles (NPs) that exhibit bright colors have been used as coloring agents of glass artifacts since before Christ. After the origin of the coloration, localized surface plasmon resonance (LSPR), was elucidated, their application has been expanded widely. This account focuses on electrochemical and photoelectrochemical applications of the plasmonic metal and compound NPs. Because LSPR is based on collective oscillation of free electrons in a NP in resonance with electric field oscillation of light, the resonant wavelength can be tuned electrochemically by transferring electrons to or from the NP. On this basis, we developed a new class of plasmonic sensors without gratings, and near infrared electrochromic smart windows. Meanwhile, resonant NPs exhibit charge separation at the interface with a semiconductor such as TiO2. We studied this phenomenon, plasmon-induced charge separation (PICS), in particular about mechanisms including behavior of energetic carriers (hot holes and electrons), by using a wide variety of plasmonic NPs with different morphologies and compositions. Knowledge thus obtained was exploited for nanofabrication and development of near infrared PICS devices.

Content from these authors
© 2019 The Electrochemical Society of Japan
feedback
Top