Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

UNCORRECTED PROOF
Faster R-CNN-based Detection and Tracking of Hydrogen and Oxygen Bubbles in Alkaline Water Electrolysis
Kohei TOYAMA Ryo KANEMOTORyuta MISUMITakuto ARAKIShigenori MITSUSHIMA
著者情報
ジャーナル オープンアクセス 早期公開
J-STAGE Data

論文ID: 24-00127

この記事には本公開記事があります。
UNCORRECTED PROOF: 2025/01/25
ACCEPTED MANUSCRIPT: 2025/01/10
詳細
抄録

In this study, a method for detecting and tracking hydrogen and oxygen bubbles during alkaline water electrolysis was developed using Faster R-CNN and DeepSORT. The images required for CNN training were automatically generated by a pseudo-bubble image generation algorithm specifically developed for the purpose of this study. The method was applied to the results of observations on alkaline water electrolysis obtained under various current densities and wire electrode diameters. Evaluation of detection performance using a confusion matrix showed that for the hydrogen evolution reaction (HER) at a current density of 1.0 A cm−2 and a wire electrode diameter of 200 µm, the method achieved a precision of 1.00, recall of 0.840, and F1 score of 0.940, indicating very high detection performance. For the oxygen evolution reaction (OER), bubbles were detected almost perfectly under all conditions, with all detection metrics exceeding 1.00. The proposed method was approximately 20000 times faster than humans. Bubble diameter distribution, total volume, total number, and Sauter mean diameter were obtained and quantitatively assessed, and the relationships between current density and electrode diameter for both HER and OER have been discussed. This method enables accurate, rapid, and automatic quantitative evaluation of visualization results from various alkaline water electrolysis observations, which were previously difficult and labor-intensive to perform manually.

Fullsize Image
著者関連情報
© The Author(s) 2024. Published by ECSJ.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License (CC BY-NC-SA, https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium by share-alike, provided the original work is properly cited. For permission for commercial reuse, please email to the corresponding author. [DOI: 10.5796/electrochemistry.24-00127].
https://creativecommons.org/licenses/by-nc-sa/4.0/
feedback
Top