A 1.6 ppm/°C bandgap voltage reference for an extended operating temperature range

Ruhaiﬁ Abdullah Zawawi¹ and Tun Zainal Azni Zulkifli²a)
¹ Collaborative Microelectronic Design Excellence Centre (CEDEC), Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Seberang Prai Selatan, Pulau Pinang, Malaysia
² RMIC Group, School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Seberang Prai Selatan, Pulau Pinang, Malaysia
a) eezainal@usm.my

Abstract: A new CMOS bandgap voltage reference (BGR) is proposed and simulated using Silterra 0.13 µm CMOS technology. The proposed BGR utilizes 3 curvature-corrected current generators that compensate for the output voltage variation in an extended temperature range. The proposed circuit generates an output voltage of 1.181 V with a variation of 380 µV from −50 °C to 150 °C.

Keywords: CMOS bandgap reference, current-control circuit

Classification: Integrated circuits

References

1 Introduction

The BGR circuit is an important building block of electronic devices, such as analog-to-digital converter and digital-to-analog converter. The voltage reference of the first-order BGR is obtained by adding the voltage across a p-n diode to the voltage that is proportional to the absolute temperature (PTAT) \[1, 2, 3\]. The nonlinear voltage across the p-n diode, which is explained in \[4\], causes the variation in voltage reference. The proposed circuits in \[5, 6, 7, 8, 9, 10\] have been proven to compensate for the nonlinear voltage, which give optimum output voltage at operating temperatures between \(-50 °C to 125 °C\). However, with increased temperature to 125 °C, the circuit suffers from a huge output voltage variation because of uncontrolled nonlinear current generators. To avoid this problem, an improvement in nonlinear current generator is proposed, whereby the nonlinear current can be controlled and the reference voltage can be optimized for a wider operating temperature range.

2 Proposed design

The principal operation of the proposed BGR is shown in Fig. 1. The proposed curvature-compensation technique has three nonlinear voltages \(V_{NL1}, V_{NL2}, \text{ and } V_{NL3}\), which are added to the first-order BGR. The nonlinear voltage \(V_{NL1}\) compensates for the voltage reference at \(T_1\), whereas \(V_{NL2}\) and \(V_{NL3}\) are produced for curvature correction between \(T_2\) to \(T_3\). The nonlinear voltages \(V_{NL2}\) and \(V_{NL3}\) act like voltage pulses that control the voltage reference variation at all temperatures from \(T_2\) to \(T_3\). As a result, the output voltage reference \(V_{REF}\) with low variation can be achieved within the large temperature range of \(T_1\) to \(T_3\).

To realize the curvature-corrected BGR, \(I_{NL1}, I_{NL2}, \text{ and } I_{NL3}\) generators, along with the first-order BGR and a startup circuit, are proposed and illustrated in Fig. 2. The output voltage \(V_{REF0}\) of the first-order BGR is expressed as

\[
V_{REF0} = \frac{R_3 + R_4}{R_1} V_T \ln(n) + V_{EB3}. \tag{1}
\]

The nonlinear terms in \(V_{EB3}\) \[4\], which cause output voltage variation at low and high temperatures, significantly vary from the reference voltage at typical temperatures.
The proposed I_{NL1} generator G_A fixes the voltage variation at a low temperature. The current I_{PTAT} through the resistor R_4 produces a PTAT voltage given as

$$V_{G,MP6} = R_4 I_{PTAT},$$

where

$$I_{PTAT} = \frac{V_T \ln(n)}{R_1}.$$ \hspace{1cm} (3)

At a low temperature, M_{P6} operates in saturation region, sourcing I_{NL1} into the first-order BGR. The voltage change at the source terminal of M_{P6} and M_{P7} is reduced by setting the size of M_{P7} to be larger than M_{P6}, which is detailed in [8]. With increased temperature, the gate voltage of M_{P6} increases causing the decrease of the drain current, abruptly causing the transistor to move to cut-off region.

The second current generator G_B operates in the opposite condition as compared to G_A. Initially at a temperature below T_2, the PTAT current will result in the voltage drop across $R5$ such that M_{P9} is in the cut-off region. Hence, I_{NL2} exhibits negligible current. However, beyond T_2, the PTAT current flows through M_{P6}, which is mirrored to R_5. A PTAT voltage given as

$$V_{G,MP9} = R_5 I_{PTAT}$$

(4)

drives M_{P9} in saturation region, thereby producing significant nonlinear current I_{NL2}. The operation is similar in current generator G_C, where I_{NL3} is produced and added to the first-order BGR. M_{N3} and R_6 limit I_{NL2} to a certain amount and pull the current down with increased temperature, whereas M_{N6} and R_8 control I_{NL3} at a higher temperature. M_{P9} and M_{P11} set the amount of current I_{NL2} and I_{NL3}, respectively. R_6 is set to be larger than R_8. By increasing the temperature, M_{N3} is cut-off earlier than M_{N6}.

The output voltage reference of the proposed circuit is given by

$$V_{REF} = \frac{R_2 + R_3}{R_1} V_T \ln(n) + V_{EB3} + (I_{NL1} + I_{NL2} + I_{NL3})R_3.$$ \hspace{1cm} (5)
where n is the emitter-area ratio of Q_1 and Q_2, and I_{NL1}, I_{NL2}, and I_{NL3} are nonlinear currents flowing through MP_6, MP_9 and MP_{11}, respectively.

3 Simulation results and discussions

The proposed BGR shown in Fig. 2 is simulated with Silterra 0.13 µm process. The simulated voltage references and nonlinear current are plotted in Fig. 3. The maximum currents of 300, 150, and 400 nA are obtained for I_{NL1}, I_{NL2}, and I_{NL3}, respectively. The reference voltage is proportionally grown to the nonlinear current plotted at −50, 105, and 135 °C. The maximum and minimum output voltages of the proposed BGR are 1.18102 and 1.18140 V respectively. Hence, the temperature coefficient of 1.6 ppm/°C is obtained within the temperature range of −50 °C to 150 °C, which is fivefold smaller than the temperature coefficient achieved from the first-order BGR.

Table I compares the performance of the proposed curvature-compensated BGR circuits with that of [7] and [9]. The proposed BGR’s temperature coefficient of 1.6 ppm/°C is better than the other designs. The simulation results under the influence of the 3 current generators indicate that the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>[7]</th>
<th>[9]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Reported</td>
<td>2003</td>
<td>2009</td>
<td>2014</td>
</tr>
<tr>
<td>Supply Voltage (V)</td>
<td>2.0–4.0</td>
<td>1.7–4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Current Cons. (µA)</td>
<td>23 (max.)</td>
<td>12–28</td>
<td>36</td>
</tr>
<tr>
<td>Ref. Voltage (V)</td>
<td>1.14205</td>
<td>1.317</td>
<td>1.181</td>
</tr>
<tr>
<td>Temp. Range (°C)</td>
<td>0 to 100</td>
<td>10 to 125</td>
<td>−50 to 150</td>
</tr>
<tr>
<td>TC (ppm/°C)</td>
<td>2.6–6.1</td>
<td>10</td>
<td>1.6</td>
</tr>
<tr>
<td>CMOS Technology</td>
<td>0.6-µm</td>
<td>0.5-µm</td>
<td>0.13-µm</td>
</tr>
</tbody>
</table>

Fig. 3. Proposed curvature-corrected BGR circuit.
The proposed curvature-compensation technique can be used to improve the TC of the BGR. More notably, with the addition of the third current generator G_C, the temperature range is extended to 150 °C. Hence, the uncontrolled voltage variation beyond 125 °C can be alleviated.

4 Conclusion

A CMOS bandgap voltage reference with the new curvature-corrected technique is proposed. Based on this technique, the output voltage reference of 1.181 V with 380 µV variation is obtained, operating within the extended temperature range of −50 °C to 150 °C. The circuit is designed to operate at 2.5 V supply voltage. The accuracy of the proposed BGR is fivefold higher than that of the first-order BGR.

Acknowledgments

This project was supported by Universiti Sains Malaysia, under grant number 304/PCEDEC/60310038. The authors express their sincerest appreciation to all ICDC group members, Silterra Malaysia Sdn. Bhd., and the Collaborative Microelectronic Design Excellence Centre.