Analysis and design of a V-band low-noise amplifier in 90 nm CMOS for 60 GHz applications

Zhenxing Yu1a), Jun Feng1, Yu Guo2, and Zhiqun Li1
1 Institute of RF-& OE-ICs, Southeast University, Nanjing 210096, China
2 Department of Electrical Engineering & Computer Science, University of California, Irvine, Irvine 92603, United States
a) yzx_108@163.com

Abstract: A V-band low-noise amplifier with the gain boosting and noise reduction technique in 90 nm LP CMOS is implemented and tested in this paper. The operation principles of the two techniques are analyzed in detail. The fabricated LNA has a peak gain of 19.8 dB, 3-dB bandwidth of 10.5 GHz and NF of 5.86 dB at 61.5 GHz. Additionally, the reverse isolation of this LNA is better than 50 dB at all frequency. The input and output return losses are both below −10 dB in the China’s 60 GHz unlicensed band (59–64 GHz). The total chip size is 0.36 mm² including testing pads.

Keywords: low-noise amplifier (LNA), millimeter wave (MMW), gain boosting, noise reduction

Classification: Integrated circuits

References
1 Introduction

In recent years, the unlicensed band ranging from 57 to 66 GHz has become of special interest owing to its broadband bandwidth suiting for high data rate communication. The V-band spectrum centering around 60 GHz has found an increasingly wide utilization in many high speed wireless standards and applications such as 802.11ad, 802.15c, WirelessHD, WiGig, and ROF transmission. Due to the advantages of high-level integration, low cost and low power consumption, CMOS technology is tempting to develop the 60 GHz transceiver front-ends. Low-noise amplifier (LNA) is the first active circuit of receiver, whose performance is crucial to the sensitivity and dynamic range of the overall system.

For millimeter wave (MMW) LNAs implementation, an amplifier with a multistage topology is usually adopted to increase the power gain. For example, in [1], a two-stage common source (CS) amplifier with the transformer feedback LNA in 65 nm CMOS process was reported. Though a low NF of 3.8 dB was achieved, the gain of 10 dB, and dc power consumption of 35 mW were not satisfactory. In [2], a three-stage CS amplifier with the transformer and capacitive feedback LNA in 65 nm CMOS process was demonstrated. Though a high gain of 23 dB was achieved, the reverse isolation of 37 dB was too low. Multistage common source configurations [2, 3] are widely used in MMW band due to their superior noise performance, but suffer from poor reverse isolation. Multistage cascode topology has the advantage of good isolation, however, as the operation frequency increases, the noise performance of traditional cascode amplifier will be degenerated due to the existence of large parasitic capacitance on the interstage node of the cascode structure. In [4], a parallel inductor is added at the drain of the CS transistor to resonate with the parasitic capacitance of regular cascode amplifier, thus reducing the NF of the cascode amplifier. In [5], an extra inductor is added between the CS and CG transistor to resonate with the parasitic capacitance at the interstage node, thus reducing the NF as well. In [6], a T-type matching network is placed between the CS and CG stage to solve the influence of the parasitic capacitance. In [7], an additional inductor was added at the gate of the CG transistor to improve the gain with penalty in the stability of the circuit. In [8], Terry Yao, et al. have been explored the algorithmic design methodology of MMW LNA, however their analysis on the interstage match between the CS and CG amplifier was not reasonable, and it was not satisfied with a gain of 14.6 dB, reverse isolation of 32 dB and 3-dB bandwidth of 8 GHz in their work.

In this paper, we present a V-band LNA fabricated in a 90 nm CMOS technology. This LNA utilizes the noise reduction and gain boosting technique to achieve a peak gain of 19.8 dB and NF of 5.86 dB. Moreover, the analysis of the gain boosting and noise reduction technique is also presented.

2 Circuit design and analysis

2.1 Circuit topology and transistor biasing

The V-band LNA schematic is presented in Fig. 1. The LNA is composed of a CS stage followed by two cascode stages. And two extra inductors are used in each cascode stage. One inductor (L_4 and L_8) is added between the CS and CG stage to
resonate with the parasitic capacitance of active devices, thus reducing the noise contribution from the CG transistor. The other inductor \(L_{g1} \) and \(L_{g2} \) is added at the gate of the CG transistor, which can establish resonant tank to boost the gain at the higher frequency. However, in order to make the circuit unconditionally stable, the inductance value should not be too big.

Transistor biasing is critical to the power gain of amplifier as well as the minimum noise figure. While other authors have investigated the impact of biasing on peak \(f_{\text{MAX}} \) values and noise parameters of MOSFETs [9], it is more intuitive to determine the biasing by comparing the relationships of maximum available gain \((G_{\text{max}}) \) and minimum NF \((NF_{\text{min}}) \) versus current density. The simulated \(G_{\text{max}} \) and \(NF_{\text{min}} \) of the CS amplifier versus current density are shown in Fig. 2. It is observed that the variation of \(NF_{\text{min}} \) versus current density is different from the fluctuation of \(G_{\text{max}} \). The \(G_{\text{max}} \) is maximum when the current density is about 0.35 mA/\(\mu \)m, while the \(NF_{\text{min}} \) is minimum when the current density is about 0.1 mA/\(\mu \)m. Thus, there exhibits a trade-off between gain and noise performance in practical designs, and the current density of each stage in this work are selected about 0.2 mA/\(\mu \)m.

2.2 Analysis of the traditional cascode amplifier

Fig. 3 shows the schematic and equivalent small-signal circuit of traditional cascode amplifier. The impedance \(Z_L \) is the output load, and the capacitor \(C_X \) is the total parasitic capacitance to ground at the node X of this amplifier. \(C_X \) will
deteriorate the noise and gain performance of conventional cascode amplifier in the higher frequency, especially in the MMW band.

To simplify the analysis, the effect from the gate induced noise, gate-drain capacitor C_{gd} and channel length modulation be neglected, the noise factor of the classical cascode amplifier is given as [4]

$$F_{cas} = 1 + \frac{1}{1 + \frac{1}{r_{1}^{2}} g_{do1} R_{S} \frac{\omega_{0}}{\omega_{T}} + 4 \frac{1}{1 + \frac{1}{r_{2}^{2}} g_{do2} R_{S} \frac{\omega_{0}}{\omega_{T}}^{2} \frac{\omega_{0}}{\omega_{T}}^{2}}}$$

(1)

Where $g_{do1(2)}$ and g_{m2} are the drain to source conductance of $M_{1(2)}$ at zero V_{ds} and the transconductance of M_{2}, respectively. $\gamma_{1(2)}$ is the bias-dependent parameter for $M_{1(2)}$. $\omega_{T} = g_{m1}/C_{gs1}$, and ω_{0} is the input resonant angular frequency. R_{S} is the source impedance. And the voltage gain of traditional cascode amplifier is given as

$$A_{v,cas} = -\frac{G_{m1} g_{m2} Z_{L}}{g_{m2} + S C_{X}}$$

(2)

Where G_{m1} is the equivalent transconductance of the CS stage, and it is shown as

$$G_{m1} = \frac{\omega_{T}}{\omega_{0} R_{S}}$$

(3)

2.3 Operation principle of the noise reduction technique

In [8], Terry Yao, et al. presented adding an inductor in cascode stage to boost the f_{T} of cascode, but they thought this technique as the artificial transmission line match, which is not reasonable. The artificial transmission line is usually comprised of more than T-sections or π-sections. Since the interstage match is only one π-section in this technique, the match network is not an artificial transmission line. Fig. 4 shows the schematic and equivalent small-signal model of cascode amplifier with this technique. The noise factor of cascode amplifier with a noise reduction inductor can be written as follows.

$$F_{nr} = 1 + \gamma_{1} g_{do1} R_{S} \frac{\omega_{0}}{\omega_{T}}^{2} + 4 \gamma_{2} g_{do2} R_{S} \frac{\omega_{0}}{\omega_{T}}^{2} \frac{\omega_{0}}{\omega_{T}}^{2}$$

(4)

$$C_{X} = (C_{1} + C_{2}) \left[1 - \omega_{0}^{2} L_{d1} C_{1} C_{2} C_{1} + C_{2}\right] = C_{X} \left[1 - \omega_{0}^{2} L_{d1} \frac{C_{1} C_{2}}{C_{X}}\right]$$

(5)

Where C_{1} and C_{2} represent the parasitic capacitor to ground at the drain of transistor M_{1} and at the source of transistor M_{2}, respectively. C_{X} is the sum of
C1 and C2. Ld1 is the noise reduction inductor. According to Eq. (4) and Eq. (5), when the inductor Ld1 resonates with the parasitic capacitors (Ld1 = Cx/oω^2C1C2), the noise contribution from the transistor M2 will be reduced effectively and then the total noise of the circuit can be decreased. After the small-signal analysis, the voltage gain of the cascode amplifier with the noise reduction technique can be written as

\[|A_{v, nr}|^2 = \frac{(-G_{m1}g_{m2}Z_L)^2}{g_{m2}^2(1 - \omega^2L_{d1}C_1)^2 + \omega^2C_X^2(1 - \omega^2L_{d1}\frac{C_1C_2}{C_X})^2} \] (6)

Eq. (6) suggests that the gain of amplifier with the noise reduction technique increases slightly with respect to the inductor Ld1, and then declines gradually. When differentiating the denominator of Eq. (6) with respect to Ld1, one obtains

\[L_{d1} = \frac{g_{m2}^2 + \omega^2C_2C_X}{\omega^2C_1(g_{m2}^2 + \omega^2C_2^2)} = \frac{C_X\left(\frac{g_{m2}^2}{C_X} + \omega^2C_2\right)g_{m2}^2C_1\left(\frac{g_{m2}^2}{C_2} + \omega^2C_2\right)}{\omega^2C_1C_2\left(\frac{g_{m2}^2}{C_2} + \omega^2C_2\right)} < \frac{C_X}{\omega^2C_1C_2} \] (7)

The amplifier will achieve the maximum gain when satisfy the Eq. (7). The simulated NF_{min} and G_{max} of cascode amplifier with this technique versus the inductance value of Ld1 are shown in Fig. 5. It is observed that the simulated NF_{min}
and G_{max} of the amplifier agree with the above analysis greatly. The simulated G_{max} is maximum when the inductance value of L_{d1} is about 150 pH, while the simulated NF_{min} is minimum when the inductance value of L_{d1} is about 350 pH, which implies that there will be some compromises in practical designs. To obtain better noise and gain performance simultaneously, the inductance value of L_{d1} is selected about 200 pH.

2.4 Operation principle of the gain-boosting technique

Fig. 6 shows the schematic and equivalent small-signal circuit of cascode amplifier with the gain-boosting technique. By the small-signal analysis, the voltage gain of the amplifier can be given as

$$|A_{v,gb}|^2 = \frac{(-G_{m1}g_{m2}Z_L)^2}{g_{m2} + \omega^2(C_1 + C_2)^2(1 - \omega^2L_{g2}C_1'C_2)^2} \approx \frac{(-G_{m1}g_{m2}Z_L)^2}{g_{m2} + \omega^2C_2^2(1 - \omega^2L_{g2}C_1'C_2)^2}$$

(8)

Where C_1' and C_2' are the parasitic capacitance of the transistors. Compared Eq. (8) with Eq. (2), it is clear that the inductor L_{g2} can enhance the gain of circuit effectively, when the inductor L_{g2} is resonated with the parasitic capacitors. However, the inductor L_{g2} will deteriorate increasingly the stability as well. The simulated G_{max} and K-factor of this amplifier versus the inductor L_{g2} are shown in Fig. 7. To obtain better gain and stability simultaneously, the value of L_{g2} is selected about 50 pH.

Fig. 6. The schematic and equivalent small-signal circuit of cascode amplifier with the gain-boosting technique

Fig. 7. Simulated the G_{max} and K-factor versus the inductor L_{g2} at 60 GHz
2.5 Stability analysis of the two techniques

Fig. 8 shows the K-factor of cascode amplifier with the two techniques respectively. It is obvious that the gain boosting inductor L_{g2} deteriorates the stability seriously, and the noise reduction inductor L_{d1} improves the stability slightly. The reason can be explained by deriving the input admittance of the circuit. The input admittance of the CG stage with the gain boosting technique in Fig. 4 is written as

$$Y_{IN2,gb} = \frac{g_{m2} + S(C_1 + C_2)}{1 + S^2 L_{g2} C_2} \left[1 + S L_{g2} \frac{C_1 C_2}{C_1 + C_2} \right]$$

(9)

$$\text{Re}[Y_{IN2,gb}] = \frac{g_{m2}}{1 - \omega_0^2 L_{g2} C_2^2}$$

(10)

Eq. (10) indicates that the excessively large inductor L_{g2} will lead to a negative conductance in the input admittance, thus the circuit is unstable. Similarity, the input admittance of the CG stage with the noise reduction technique in Fig. 6 is given as

$$Y_{IN2,nr} = SC_1 + \frac{g_{m2} + S(C_1 + C_2)}{1 + Sg_{m2} L_{d1} + S^2 L_{d1} C_2}$$

(11)

$$\text{Re}[Y_{IN2,nr}] = \frac{g_{m2}}{(1 - \omega_0^2 L_{d1} C_2^2 + \omega_0^2 g_{m2} L_{d1}^2)}$$

(12)

From Eq. (12), it is observed that a negative input conductance could not be obtained in any case, thus the amplifier with the noise reduction technique will be stable unconditionally.

3 Measurement results

The proposed LNA was designed and fabricated in a 90 nm LP CMOS technology. The chip occupies 0.36 mm2 area including testing pads and is depicted in Fig. 9. The LNA was tested by Agilent PNA-X N5267A up to a frequency of 67 GHz. Fig. 10 and Fig. 11 illustrate the measured and simulated S parameters of the presented amplifier. For a supply voltage of 1.2 V, the measured peak S21 is lower than the simulated peak S21 about 6.5 dB, which may be caused by the inaccurate model and the parasitic effect of the long and narrow supply paths. Since the model using for this LNA design was verified and demonstrated only in below 30.1 GHz
by the manufacturer, the model at 60 GHz is more likely inaccurate. For different supply voltages, the gain measurement results are shown in Fig. 12. The measured peak gain for the supply voltage of 1.2 V, 1.5 V, and 2 V are 13.3 dB, 16.3 dB, and 19.8 dB, respectively. The measured results can agree with simulation greatly when the supply voltage is 2 V, thus the next measurements are tested with a 2 V supply.

It can be observed in Fig. 10 that the LNA has a peak gain of 19.8 dB at 61.5 GHz and 3-dB bandwidth of 10.5 GHz. For the lack of noise figure analyzer, the noise figure of this LNA was not measured. The simulated NF is lower 6.4 dB from 54 to 66 GHz and the minimum simulated NF is 5.86 dB at 60 GHz. In addition, the measured reverse isolation is lower than −50 dB. The input and output return losses
are both below $-10\,\text{dB}$ from 58 to 65 GHz. Fig. 13 shows the measured results of stability. It is observed that the presented LNA is stable unconditionally. Fig. 14 shows the input 1 dB compression point of this amplifier is about $-22\,\text{dBm}$. Table I shows the performance summary and comparison with previously reported MMW LNA.
4 Conclusions

A V-band LNA for 60 GHz application has been demonstrated in this paper. By connecting an additional inductor in series between the CS and CG stage of cascode configuration, the noise contribution from CG transistor can be decreased, thus reducing the total noise of cascode amplifier. In addition, an extra inductor is utilized at the gate of the CG stage to boost the gain of cascode amplifier. Experimental results show a peak gain of 19.8 dB with 3-dB bandwidth from 56 to 66.5 GHz, and IP_{1dB} of −22 dBm, while consuming 26 mW from a 2 V supply.

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2010CB327404). The authors would like to thank Prof. L. M. Li, school of information science and engineering, Southeast University, for his valuable suggestions and the help with the chip measurement. The authors also thank teacher L. Zhang and W. Li, institute of RF-& OE ICs, Southeast University for their help of assembling the layout and measurement.

Table 1. Recently reported CMOS MMW low noise amplifiers

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tech. (nm)</th>
<th>f_T (GHz)</th>
<th>Peak Freq. (GHz)/$BW_{3\text{dB}}$ (%)</th>
<th>Peak Gain (dB)</th>
<th>S_{12} (dB)</th>
<th>NF (dB)</th>
<th>IP_{1dB} (dBm)</th>
<th>P_{DC} (mW)</th>
<th>Area (mm2)</th>
<th>FOM$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]*</td>
<td>65</td>
<td>145</td>
<td>61/37**</td>
<td>10</td>
<td>>47</td>
<td>3.8</td>
<td>-4.6</td>
<td>35</td>
<td>0.94</td>
<td>10</td>
</tr>
<tr>
<td>[2]</td>
<td>65</td>
<td>N/A</td>
<td>58/15</td>
<td>23</td>
<td>>37</td>
<td>4</td>
<td>-26</td>
<td>8</td>
<td>(1.25 V)</td>
<td>0.05*** N/A</td>
</tr>
<tr>
<td>[3]</td>
<td>90</td>
<td>95</td>
<td>45/13</td>
<td>18.3</td>
<td>>40</td>
<td>4.73</td>
<td>-15</td>
<td>20</td>
<td>(1.2 V)</td>
<td>0.57</td>
</tr>
<tr>
<td>[5]</td>
<td>65</td>
<td>250</td>
<td>58/23</td>
<td>16</td>
<td>>40</td>
<td>4.5</td>
<td>-23</td>
<td>10</td>
<td>(2 V)</td>
<td>0.25*** 18.4</td>
</tr>
<tr>
<td>[6]</td>
<td>90</td>
<td>95</td>
<td>60/N/A</td>
<td>7.5</td>
<td>N/A</td>
<td>6.5**</td>
<td>N/A</td>
<td>6.7</td>
<td>0.34</td>
<td>N/A</td>
</tr>
<tr>
<td>[7]</td>
<td>65</td>
<td>250</td>
<td>60/20</td>
<td>18</td>
<td>>40</td>
<td>4</td>
<td>-22</td>
<td>28.8</td>
<td>(1.2 V)</td>
<td>0.54</td>
</tr>
<tr>
<td>[8]</td>
<td>90</td>
<td>120</td>
<td>58/14</td>
<td>14.6</td>
<td>>32</td>
<td>5.5</td>
<td>N/A</td>
<td>24</td>
<td>(1.5 V)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

This work

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tech. (nm)</th>
<th>f_T (GHz)</th>
<th>Peak Freq. (GHz)/$BW_{3\text{dB}}$ (%)</th>
<th>Peak Gain (dB)</th>
<th>S_{12} (dB)</th>
<th>NF (dB)</th>
<th>IP_{1dB} (dBm)</th>
<th>P_{DC} (mW)</th>
<th>Area (mm2)</th>
<th>FOM$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9]</td>
<td>90</td>
<td>95</td>
<td>61.5/17</td>
<td>19.8</td>
<td>>50</td>
<td>5.23**</td>
<td>-22</td>
<td>26</td>
<td>(2 V)</td>
<td>0.36</td>
</tr>
<tr>
<td>[10]</td>
<td>90</td>
<td>95</td>
<td>61.5/17</td>
<td>16.3</td>
<td>>50</td>
<td>5.41**</td>
<td>-20</td>
<td>16.5</td>
<td>(1.5 V)</td>
<td>0.36</td>
</tr>
<tr>
<td>[11]</td>
<td>90</td>
<td>95</td>
<td>61.5/17</td>
<td>13.3</td>
<td>>50</td>
<td>5.86**</td>
<td>-20</td>
<td>9.6</td>
<td>(1.2 V)</td>
<td>0.36</td>
</tr>
</tbody>
</table>

*: measured with the source resistance of 30 Ω; **: simulated results; ***: core area without pads.

$^+$: FOM $= \frac{\text{Gain} \times \text{BW (GHz)}}{[\text{NF} - 1] \times P_{DC} \times f_T (GHz)}$

Table I. Recently reported CMOS MMW low noise amplifiers