Method for BGR’s second-order temperature compensation using resistor combinations with specified temperature coefficients

Ran Zheng, Lifu Dai, and Yanzhao Ma
School of Computer Science and Technology, Northwestern Polytechnical University, 127 Youyixilu, Xi’an, 710072, P.R. China
a) dailifulancelot@outlook.com

Abstract: In this paper, an original method is proposed to implement temperature compensation for a bandgap reference (BGR) circuit without any auxiliary circuits. By employing resistor combinations (formed by different type of resistors) with specified temperature coefficients (TC), the temperature coefficient of a previous reported bandgap reference is improved from 22.11 ppm/°C to 3.499 ppm/°C (−25°C–85°C). In order to accomplish the improvement, a useful model is also proposed to help understand the relationship among the TCs of resistors’ combinations and BGR.

Keywords: bandgap reference, high-order compensation, temperature coefficient, resistors

Classification: Electron devices, circuits and modules

References

1 Introduction

Bandgap references are very important components in integrated systems, which can provide stable voltage/current references insensitive to process, power supply voltage and temperature variations. First-order compensation is considered to be a basic approach to implement high-precision BGRs, which, however, can only help to achieve a temperature coefficient between 20 to 100 ppm/°C [1]. To solve this problem, many high order curvature correction techniques have been developed [2, 3, 4, 5, 6, 7], in which, auxiliary circuits with considerable area must be employed. For optimizing the temperature coefficients of BGRs without auxiliary circuits, different types of resistors are employed which lacks of a full elaboration on the selections of resistors types [8]. In this paper, the combination of different type of resistors rather than single kind of resistor are employed in a sub-1V BGR, in which, the resistor combinations’ TC can be specified to implement higher-order temperature compensation and then achieve a very low BGR’s TC. Besides, the mathematical model of the TCs’ relationship among BGR and the resistor combinations is also proposed in this work.

2 Topology of proposed sub-1V bandgap reference

The proposed sub-1V bandgap reference is shown in Fig. 1, which is derived from a previous work [9]. In which, all the transistors are working in sub-threshold region to realize low power consumption and be suitable for low power supplies. The reference voltage V_{ref} can be calculated as Eq. (1):

$$V_{\text{ref}} = \alpha \cdot \frac{R_2}{R_1} \cdot V_T + V_{GS2}$$ \hspace{1cm} (1)

in which α is a positive coefficient related with the physical parameters of the components; V_{GS2} is the gate-source voltage of M_2; V_T is the thermal voltage. Since M_2 works in sub-threshold region, which makes M_2 behaving like a bipolar transistor, V_{GS2} has a negative TC (around $-1.5 \text{ mV/}^\circ\text{C}$ at 25°C) varying with temperature. While regarding the resistors as a same type of device, we take a derivative of V_{ref} with respect to absolute temperature T. We can find Eq. (2):

$$\frac{dV_{\text{ref}}}{dT} = \frac{\alpha \cdot k}{q} \cdot \frac{R_2}{R_1} + \frac{dV_{GS2}}{dT} $$ \hspace{1cm} (2)

where, k is the boltzmann constant and q is the elementary charge. In order to generate a reference voltage with a near zero TC, all that we can do is to adjust the
ratio R_2/R_1 in the situation that R_1 and R_2 have the same TC. However, since dV_{GS2}/dT is not a constant value but varies with temperature, this kind of first-order compensation can be used to achieve a temperature coefficient of no less than 22.11 ppm/°C after carefully review [5].

In our work, R_1 and R_2 are firstly set to 36.5 k and 547.5 k through conventional first-order compensation. Especially, R_1 and R_2 are implemented using resistors-combinations as shown in Fig. 1. Therefore it’s able to adjust R_1 and R_2’s TC to realize a second-order compensation which is describe in next section.

3 Proposed method for second-order compensation

In our design, we use different types of resistors to fabricate R_1 and R_2, respectively, thus the resistors could have different TCs. In this scenario, the derivative of V_{ref} in Eq. (1) can be taken again as Eq. (3), in which, more factors are induced to contribute to the balance of V_{ref}’s temperature curve.

$$\frac{dV_{ref}}{dT} = \alpha \cdot \frac{kT}{q} \cdot \left(\frac{1}{R_1} \frac{dR_2}{dT} - \frac{R_2}{R_1^2} \frac{dR_1}{dT}\right) + \left(\alpha \cdot \frac{k}{q} \cdot \frac{R_2}{R_1} + \frac{dV_{GS2}}{dT}\right)$$ \hspace{1cm} (3)

Eq. (3) suggests that if V_{ref}’s TC is not as good as expected after R_2/R_1 being set to an appropriate value according to the demand of first-order compensation (PART 2 in Eq. (3)), we can still adjust R_1 and R_2’s TCs implementing second-order compensation (PART 1 in Eq. (3)) to achieve a better TC for V_{ref}. Thus, if an zero TC is expected for Eq. (3), it can be turned into Eq. (4).

$$A \cdot \frac{dR_2}{dT} + B \cdot \frac{dR_1}{dT} + C = 0$$ \hspace{1cm} (4)

where $A = 1/R_1$, $B = -R_2/R_1^2$ and $C = R_2/(TR_1) + (q/akT) \cdot (dV_{GS2}/dT)$. After R_1 and R_2’s values are decided to meet the demand of first-order compensation, A and B can be treated as constants. C is supposed to be related to absolute temper-
nature. Assuming that C varies little in the concerned temperature range (thus C can be considered to be a constant, which will be further proved to be acceptable), it can be derived that if the R_1 and R_2’s TCs satisfy the linear relationship described in Eq. (4), a zero TC can be achieved for V_{ref}.

The reference circuits are designed using TSMC0.18 µm standard CMOS process. There are several types of resistors can be fabricated using this process and part of them and their corresponding TCs are described in Table I. (rphpoly: poly resistor without silicide. rpplus..2T: P+ diffusion resistor without silicide. mplus..2T: N+ diffusion resistor without silicide. rnhpoly: N+ poly resistor without silicide. W is the width of the resistive layer as well as the contacts. The resistance of core resistive layer, contact layer and their TCs are represented by R_{co}, R_{ct}, TC_{co} and TC_{ct}, respectively. TC_{min} and TC_{max} is the minimum and maximum TCs that can be achieved employing single type of transistor using method in [10] taking the contacts’ TC into account.) However, the temperature range between TC_{min} and TC_{max} is too small to make R_1 and R_2’s TCs satisfying Eq. (4). Therefore we propose using resistor combinations rather than single kind of resistor to implement BGR circuits which is shown in Fig. 1. If two kinds of the resistors listed in Table I are used to form a resistors’ combination, we can make the combinations’ TCs range from $−1515.61$ µΩ/°C to 1478 µΩ/°C.

In order to verify the TCs relationship in Eq. (4), mass simulations are implemented among different R_1 and R_2’s TCs. At the temperature of $27°C$, R_1 and R_2’s TCs are selected every 75 µΩ/°C, respectively, from the whole combinations’ TC range. The corresponding V_{ref}’s TCs are simulated and illustrated in Fig. 2. It can be seen clearly that, the lowest V_{ref}’s TCs lies in a line determined by the linear relationship of R_1 and R_2’s TCs. Same simulations are also implemented at the temperature of $−25°C$, $0°C$, $56°C$ and $85°C$, which are illustrated in Fig. 3. It can be noted that the same linear relationships are found between R_1 and R_2’s TCs as well, in achieving lowest V_{ref}’s TCs. Fig. 4 shows that the lines derived from Fig. 2 and Fig. 3 almost stack together, which proves that, in the concerned temperature range, the lowest BGR’s TC depends on the similar linear relationships between the TCs of R_1 and R_2. For convenience, the linear equation being fitted at $27°C$ are chosen to decide the relationship between R_1 and R_2’s TCs. According to the analysis above, R_1 and R_2 are decided as 36.5 k and 547.5 k with desired TCs of $−757.9$ µΩ/°C and $−1263$ µΩ/°C, respectively. In such a scenario the best BGR’s TC can be achieved. They are implemented using the combination of rphpoly and

<table>
<thead>
<tr>
<th>Parameters</th>
<th>rphpoly</th>
<th>rppplus..2T</th>
<th>mplus..2T</th>
<th>rnhpoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (µm)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>R_{co} (Ω/µm)</td>
<td>163.35</td>
<td>67.645</td>
<td>29.365</td>
<td>153.084</td>
</tr>
<tr>
<td>TC_{co} (µΩ/°C)</td>
<td>$−238$</td>
<td>1383</td>
<td>1478</td>
<td>$−1506$</td>
</tr>
<tr>
<td>R_{ct} (Ω/µm)</td>
<td>73</td>
<td>29.5</td>
<td>13.661</td>
<td>43.001</td>
</tr>
<tr>
<td>TC_{ct} (µΩ/°C)</td>
<td>$−2086$</td>
<td>$−1550$</td>
<td>769</td>
<td>$−1584$</td>
</tr>
<tr>
<td>TC_{min} (µΩ/°C)</td>
<td>$−575.5$</td>
<td>920.584</td>
<td>1344.2</td>
<td>$−1515.61$</td>
</tr>
<tr>
<td>TC_{max} (µΩ/°C)</td>
<td>$−238$</td>
<td>1383</td>
<td>1478</td>
<td>$−1506$</td>
</tr>
</tbody>
</table>
rhopoly resistors, as illustrated in Fig. 5 and Table II (all the contacts are as long as 2 µm).

4 Experimental results

In order to validate the effectiveness of the proposed method, the bandgap reference is fabricated and evaluated using TSMC 0.18 µm CMOS process. Experiments are implemented and the results are illustrated in Fig. 6. The V_{reg}’s TC and linear sensitivity finally turn out to be 3.499 ppm/°C (−25°C–85°C) and 556.68 µV/V (0.7 V–1.7 V at 25°C) after trimming.
5 Conclusion

A method for implementing second-order bandgap reference temperature compensation using resistor combinations with specified TCs is presented in this paper. According to mathematical analysis and the whole-temperature-range simulation results, achieving best TC for \(V_{\text{ref}} \) depends on the linear relationship between \(R_1 \) and \(R_2 \)’s TCs. An approach for resistors’ type selection and TC adjustment techniques is also introduced to help us to carry out this method. Proposed BGR as well as resistors’ combinations with specified TCs are designed and fabricated using TSMC 0.18 um CMOS process. Besides, a model is derived from mass of simulations to help us understand the relationship among the TCs of resistors’ combinations and BGR. The experimental results show that the \(V_{\text{ref}} \)’s temperature curve is tested as 3.499 ppm/°C.

Table II. The parameters of resistor combinations, \(R_1 \) and \(R_2 \).

<table>
<thead>
<tr>
<th>Name</th>
<th>Length of rphpoly</th>
<th>Series number of rphpoly</th>
<th>Length of rnhpoly</th>
<th>Series number of rnhpoly</th>
<th>Parallel number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>6.185 µm</td>
<td>20</td>
<td>3.89 µm</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>R2</td>
<td>2.086 µm</td>
<td>1010</td>
<td>7.48 µm</td>
<td>1000</td>
<td>3</td>
</tr>
</tbody>
</table>

![Fig. 5. Resistor Combinations, \(R_1 \) and \(R_2 \), employed in the BGR shown in Fig. 1.](image)

![Fig. 6. Experimental results of \(V_{\text{ref}} \) using proposed method.](image)
Acknowledgments

The authors would like to thank the members of the research group in Institute of Microelectronics, NWPU. In addition, this research was supported in part by the NSF of Shaanxi Province under Grant No. 2017JM6084, National Natural Science Foundation of China under Grant No. 61504108, No. 61306128, No. 11705148, No. 11575144, No. 61504109, and the Fundamental Research Funds for the Central Universities under Grant NO. 3102017ZY028.