An integrated four port bidirectional dc-dc converter for photovoltaic energy harvesting systems

Ganesan Ranipriya¹, Ramiah Jegatheesan¹, and Krishnasamy Vijayakumar⁴(✉)

Abstract In this paper, an integrated four port DC-DC converter with bidirectional power transfer capability is proposed for connecting two photovoltaic sources with an energy storage element to a dc load. This converter achieves high power density due to its integrated structure and device sharing feature among the ports. Adopted PWM and secondary side phase-shifting control eliminates the circulating current and its associated conduction losses and minimizes the current ripple at input ports. Further, it simplifies the complexity of control by decoupling the control variables of input and output ports. Working of the converter under different operating conditions are verified with a 500-W experimental prototype.

Keywords: dc-dc converter, multiport converter, renewable energy harvesting

1. Introduction

Efficient energy harvesting from renewable sources becomes unavoidable due to the fast depleting conventional fossil fuel sources. But when there is a need for continuous power supply to the load, these renewable energy-based power generation systems become less reliable because of their intermittent nature [1, 2, 3]. In this case, multiple sources along with storage have to be used to maintain the continuous power supply to the load. For connecting multiple sources and storage either multiple converters or an integrated multiport converter can be used. An integrated multiport converter proved to be more efficient than the multiple converter structure because of its simplified structure and centralized control [4, 5, 6, 7]. Recently various topologies of multiport converters have been reported in the literature because of their increasing merits. They can be classified as non-isolated [8, 9, 10], fully-isolated [11, 12, 13] and partially-isolated topologies [14, 15, 16]. Partially-isolated topologies are gaining importance these days because of the simplified structure and improved power density features. The focus of this paper is mainly on the partially-isolated multiport topology which uses a single winding transformer to isolate multiple input ports with the load port. Many three port partially-isolated converters can be seen in literature and they are derived by either combined dc-linking and magnetic coupling technique [17] or by the integration of non-isolated circuits into isolated circuits [18, 19, 20]. These three-port converters have only one source port and a storage port, supplying a load port. Since they depend on only one source, reliability is less. A four-port converter with two source ports has been reported in [21]. It is derived by integrating non-isolated buck/boost circuits into a phase-shifted full-bridge circuit and here two source ports are formed by sharing the switching legs of the primary bridge circuit. This converter uses PWM and primary phase-shift control, in which the duty cycle adjustment of primary bridge switching legs are used for maximum power tracking of the sources and battery power management. And phase-shift between gate pulses of primary switching legs are used for output voltage regulation. This primary phase shift control results in the coupling of control variables of source and load ports [22, 23]. Further, in primary phase-shifting operation, the switching legs cannot be operated with 180° phase difference which results in increased current ripple at the input ports. And this converter allows only unidirectional power transfer between the source and load port. To overcome these effects of primary side phase shifting, secondary side phase shifting has been introduced. The application of this technique can be seen in some two port converters [24, 25, 26, 27] and three port converters [28, 29, 30]. In this paper, a modified four port bidirectional converter is formed by replacing the diodes in the secondary side with controllable switches. This inclusion of controllable switches allows the transfer of phase shift control to the secondary side while allowing bidirectional power transfer between source and load ports. Shifting of phase shift control to the secondary side decouples the control variables of the duty cycle and output voltage. Hence, in this converter, the duty cycle adjustment of primary bridge switching legs is used for maximum power tracking and battery management alone and not for output regulation. And phase shift between gate pulses of the primary and secondary switches are used to regulate the output voltage and power flow direction. This decoupling of control variables of input and output ports simplifies the control complexity. The secondary phase-shifting allows the switching legs at the primary side to be operated with 180° phase difference without any further phase shift, because of which the current ripple at the PV ports can be significantly reduced [29, 30]. Unlike primary phase shift control, this secondary phase shift control eliminates the circulating current during the freewheeling interval and reduces the related conduction losses. Also, the inclusion of controllable switches at the secondary side

¹Dept. of Electrical Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
a) kvjay.srm@gmail.com

DOI: 10.1587/elex.16.20190495
Received July 31, 2019
Accepted October 17, 2019
Publicized November 8, 2019
Copyedited December 10, 2019

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
elminates the losses due to diode reverse recovery current. This reduction of losses, significantly improves the power transfer efficiency from PVs to load when compared to primary phase shift control.

2. Proposed four port bidirectional dc-dc converter

As illustrated in Fig. 1, the mosfets Q_1–Q_4 forms a bridge which is connected to another bridge formed by mosfets Q_5–Q_8 through a high frequency transformer. This set-up is equivalent to a phase-shifted full bridge circuit. L_{hf} is the total leakage inductance plus required external inductance of the high frequency transformer and it determines the maximum power transferred between primary and secondary side ports. By adding inductors and diodes to the switching legs of the primary side, two boost converter sections are formed. Diodes are used to block the power flow into the PVs when battery is charged from load side. Mosfets Q_1 and Q_2, inductor L_{b1} with diode D_{b1} forms one boost converter. And mosfets Q_3 and Q_4, inductor L_{b2} with diode D_{b2} forms another boost converter. These boost converter sections connect the two PV sources to the battery. In this integration of boost circuits with the fullbridge circuit, primary side active devices are shared by both the boost and phase-shifted full-bridge converters, which results in the reduction of component count when compared to the conventional cascaded structure. The conventional cascaded structure depicted in [21] uses eight controllable switches in primary side other than diodes and passive devices, whereas this integrated structure uses only four controllable switches due to sharing which improves the power density. This proposed circuit is capable of feeding a stand-alone dc-load or a dc-bus.

3. Working principle of the converter

Boost converters section: With PV sources as input and battery as output, this section of converter is equivalent to a boost converter. Maximum power of the sources P_{V1} and P_{V2} are tracked by adjusting the duty cycle of switching legs D_1 and D_2 respectively. Operational waveforms of this section are given in Fig. 2. The voltage conversion ratio of this section is given by

$$V_B = \frac{V_{PV1}}{1-D_1} = \frac{V_{PV2}}{1-D_2}. \tag{1}$$

Where, V_B is the voltage across the battery and V_{PV1} and V_{PV2} are the voltages. D_1 and D_2 are duty ratios of primary side switching legs.

Full bridge with secondary phase-shift control section: From battery to load the converter is equivalent to a voltage fed full bridge converter with secondary phase-shift control. The phase difference between the switching pulses of primary and secondary bridge switches, represented as “ϕ” is used to control the amount and direction of power transfer between battery and load. The duty cycle of primary side switches is determined by MPPT or battery power management control blocks. The duty cycle of secondary side switches is fixed to 0.5T_s. The voltage conversion ratio of this section is given by

$$m = \frac{V_O}{nV_B}. \tag{2}$$

Where, n is the turns ratio of high frequency transformer, V_O is the output voltage.

The equation that represents the amount of power flow between the load and battery port is given by,

$$P = \frac{nV_B V_O (1-\phi)}{2\pi f_s L_{hf}}. \tag{3}$$

Where f_s is the switching frequency. The power flow direction is determined by the sign of the phase shift angle “ϕ”. When the switching instants of primary side switches are leading when compared to secondary side switches, then the phase shift is considered as positive and power flows from primary to secondary side. When switching instants of secondary switches are leading, then the phase shift is considered as negative and power flows from secondary to primary side. The operational waveforms of this section is shown in Fig. 3 and Fig. 4.

The primary bridge current and voltage waveform comparison for primary phase shifting and secondary phase shifting are shown in Fig. 5. It is evident that in secondary phase-shift control, there is no freewheeling stage (Zero voltage stage) and hence reduced circulating current and related conduction losses when compared to primary phase-shift control.

4. Proposed secondary phase shift control

The maximum power tracking of PV sources, charging and discharging control of battery, and regulation of load are considered as control objectives to achieve power management of different ports of the converter. The block diagram
of the adopted control strategy to achieve these control objectives is shown in Fig. 6 MPPT controller employs Perturb and Observe algorithm to calculate the duty cycle change required to track maximum power of PVs. Battery charging control provides CC and CV charging control of battery. Battery charging control operates in parallel with MPPT controls and competes for the minimum to acquire control over the duty cycle of primary side switches. The load voltage regulation is done by controlling the phase shift between the primary and secondary switches with a simple voltage control loop. The battery discharge controller monitors the state of charge of the battery, and when it reaches the minimum level it will shut down the load or changes the power flow direction by varying the phase shift angle and allows the battery to be charged by the connected dc bus or grid.

5. Possible power transfer modes

Depending on the availability of PV power, the converter is capable of working in the following power transfer modes. The states of PV and battery with power flow direction for different power transfer modes are listed in Table I.

<table>
<thead>
<tr>
<th>Mode</th>
<th>PV sources</th>
<th>Battery</th>
<th>Power flow direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MPPT</td>
<td>Charging</td>
<td>Primary to secondary</td>
</tr>
<tr>
<td>2</td>
<td>MPPT</td>
<td>discharging</td>
<td>Primary to secondary</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>discharging</td>
<td>Primary to secondary</td>
</tr>
<tr>
<td>4</td>
<td>NA</td>
<td>Charging</td>
<td>secondary to primary</td>
</tr>
</tbody>
</table>

6. Experimental results

To verify the working of the proposed converter and its control strategy, experimental prototype of 500 W was developed and control signals are generated using a digital control platform RT lab-OP4510 with the parameters shown in Table II. The inductor currents of the boost converter sections at steady state is given in Fig. 7. For a positive phase shift, the primary and secondary bridge voltages and the corresponding output voltage are given in Fig. 8. For the same phase shift, the secondary inductor
current and voltage are given in Fig. 9. Fig. 10 shows that for changes in load current, battery current compensates without changing the output voltage. And Fig. 11 shows that for changes in PV currents, again battery current changes without affecting the output. From Figs. 10 and 11, it is clear that the source side and load side control is decoupled from each other. The comparison of PV to load power transfer efficiency for the primary phase shift and secondary phase shift control obtained from same testing conditions are given in Fig. 12. These tested waveforms and results proves the validity and working of the converter with the adopted secondary phase-shift control.

7. Conclusion

A modified four port bidirectional converter is proposed for interfacing two PV sources and a battery to a dc load. The device sharing feature of this integrated converter reduces the component count and improves the power density. The adopted secondary phase shift control simplifies the control design complexity by decoupling the control variables of source and load side ports. Also, the secondary phase-shift control reduces the current ripple at PV ports by allowing the primary switching legs to be operated with 180° phase difference. The power losses related to the circulating current during the freewheeling stage is reduced and re-
verse recovery loss of diodes are eliminated in secondary phase shift control. The reduction of power losses effectively improves the power transfer efficiency from PV to load when compared with the primary phase-shifting technique. Test results of the 500-W experimental prototype validate the effectiveness and working of the converter for different input and output conditions.

References

