A Novel, Very Low Profile Dual Band Inverted 'E' Monopole Antenna for Wireless Applications in the Laptop Computer

Jayshri S. Kulkarni\(^{1,2}\), Raju Seenivasan\(^{1}\)

Abstract—A novel, very low profile and ultra-thin inverted 'E' shaped monopole antenna for WLAN/WiMAX applications in the laptop computer is presented. The thickness of the antenna is only 0.2mm and is designed using only a pure copper strip of size 20x 6mm\(^2\). The innovation of the design is miniaturized size and wider impedance bandwidth in dual band operation using two monopole radiating strips namely RS (inverted J) and PQ (inverted Z) along with open ended vertical tuning stub of size 4.5x1mm\(^2\). The measured impedance bandwidth spanned as 11.24\% (2.35-2.63)GHz in a lower band (\(F_1\)) and 18.78\% (4.92-5.94)GHz in the upper band (\(F_2\)) for VSWR<2 and covers 2.4/5.2/5.5 GHz WLAN and 5.5 GHz WiMAX bands. The presented antenna has proved excellent radiation performance, including nearly omnidirectional patterns, a stable gain of around 4dBi and an excellent efficiency of around 90\% in \(F_1\) and \(F_2\) bands. This confirms the applicability for WLAN/WiMAX applications in the prominent ultra-thin laptop computers.

Keywords: Inverted 'E' shaped monopole antenna, system ground, ultra-thin, WLAN, WiMAX.

Classification: Microwave and millimeter wave devices, circuits, and hardware

1. Introduction

The Industrial Scientific Medical (ISM) bands, namely 2.4GHz (2.40-2.48) GHz and 5GHz (5.15-5.85) GHz are used in the WLAN/WiMAX environment. Therefore, multiband antennas including inverted-F [1-2], the coupled-fed planar inverted-F antennas in [3-4], branched monopole antenna [5], dual band monopole antenna [6], printed antenna [7], monopole antennas using reactive components [8-9], antennas using additional ground plane [10-11], meander antennas [12-13], folded antennas [14-15], uniplanar antennas in [16-19], broadband antenna [20], antennas having thickness of 1mm [21-24] and cloverleaf-shaped monopole antenna [25] have been reported recently for WLAN/WiMAX technologies for the laptop computers. From the above mentioned antennas, it is understood that miniaturized and ultra-thin antennas showing high performance with less complex structure and covering WLAN/WiMAX bands for laptop applications are posing challenges for antenna designers due to shrinking of height and thickness of outside frame of the laptop display.

This paper presents a novel, very low profile and ultra-thin, inverted 'E' shaped monopole antenna with an overall size 20x6mm\(^2\) and 0.2mm thick only to operate in 2.4/5.2/5.5 GHz WLAN and 5.5 GHz WiMAX bands for wireless operations in the laptop computers [26-27]. The presented prototype was first analyzed and then measurements were performed.

2. Antenna Geometry and Design

The schematic geometry of the presented antenna for WLAN and WiMAX operations in the laptop computer is shown in Fig.1.

\(^{1}\)Dept. of Electronic and Communication, Thiagarajar College of Engineering, Madurai-625015, India
a)jayah2113@gmail.com
brass material that supports a 13-inch laptop display measuring 260x200x0.2mm. This structure adopts for small and low loss 50Ω mini coaxial feed line, whose central conductor is connected at point 'A' on lower edge of strip PQ and grounding sheath soldered at point 'B' on the system ground. This feeding position introduces the feeding gap and makes the effective dielectric constant of all radiating strips equal to 1 \([28]\), hence contribute in attaining the operating bands of the presented antenna.

The design steps of the presented antenna employed in CST MWS \([29]\) are illustrated in Fig. 2 and the corresponding reflection coefficient \((S_{11})\) dB versus frequency results are shown in Fig. 3.

For forming the structure of Ant.1, as shown in Fig.2(a), a simple short ended monopole radiating strip PQ (inverted-Z) whose length is approximately equal to a quarter wave long to resonate at a frequency of 5.5GHz is computed by using the following expression \([30]\).

\[
L = \frac{\lambda}{4} = \frac{c}{4f}
\]
(1)

where, \(c\) is the speed of light \((\text{m/s})\) and \(f\) is resonating frequency. By using the above formula and optimization technique in CST, the length of strip PQ was optimized as 16mm. The inductive reactance produced by strip PQ dominates the input impedance of Ant.1. This dominating inductive reactance is balanced by the opposite capacitive reactance which is produced by feeding gap \((W_1)\) at 5.5GHz. Therefore, the maximum power transfer takes place due to proper impedance matching produced by the accurate dimension of feeding gap \((W_1)\) and feeding positions. Hence, the Ant.1 successfully generates the resonance at 5.5GHz with wider bandwidth as shown in Fig.3. The wider bandwidth was achieved as the quality factor \(Q_0\) of the antenna became very small. The \(Q_0\) is defined as;

\[
Q_0 = \frac{R}{\omega L}
\]
(2)

where, \(X\) is reactance and \(R\) is the radiation resistance of the antenna. Due to proper impedance matching, the reactance is very small, approximately equal to 0Ω and at the same time the value of R is also equal to 50Ω. This makes the \(Q_0\) of the Ant.1 very small which in turn widens the bandwidth. This proves that, the Ant.1 produces the resonance of 5.5GHz with wider impedance bandwidth spanned in the range of \((4.92\text{-}5.90)\) GHz as shown in Fig. 3.

Further, a monopole radiating strip RS (inverted J) which is approximately quarter wave long to resonate at 2.45GHz, was computed using \((1)\) and optimized using the CST optimization technique. The optimized length was 28mm. The strip RS was coupled to Ant.1 connecting at point 'Q', without disturbing the feeding positions and creates a radiator gap as shown in Fig. 2(b). This complete structure is termed as the Ant.2. The radiator gap and the monopole radiating strip RS act as an electrical resonator due to shunt fed and this along with Ant.1 exhibit the dual resonances at 2.9GHz and 5.8GHz as shown in Fig 3. The impedance matching was disturbed at 2.45GHz and 5.5GHz due to the additional capacitive coupling offered by radiator gap and hence, Ant.2 was not able to cover the desired operating bands.

Finally, Ant.3 was designed to achieve proper impedance matching at desired resonances by protruding a vertical open ended tuning stub ‘t’ at point ‘S’ without affecting the dual resonances, wider impedance bandwidth and compactness as shown in Fig 2(c). The vertical tuning stub ‘t’ controls the additional capacitive coupling by acting as a barrier for radiator gap and hence, contributes in shifting the resonance from 5.8GHz to
5.5GHz. At the same time, the length of stub ‘t’ increases the path for electrical current which shifts the resonance from 2.9GHz to 2.45GHz. This Ant.3 covers two frequency bands, namely F_1 (2.39-2.65)GHz and F_u (4.96-5.92)GHz with wide impedance bandwidths for VSWR<2.

To further validate the wider bandwidth feature of Ant.3, Fig. 4(a) depicts the graph of input impedance Z_{in} versus frequency. In the operating bands F_1 and F_u, proper impedance matching has been achieved due to correct feeding positions and accurate dimensions of W_1 and t. Hence, the input impedance remains stable around 50Ω and reactance is approximately equal to 0Ω. Therefore, according to equation (2), Q_0 of Ant.3 becomes very small which in turn widens the bandwidth in both the operating bands. From Fig. 4(b), it is also evident that due to excellent impedance matching, there are densely populated current paths in Ant.3, which means that several current paths have different electrical lengths. Merging of these current paths, results in decreasing Q_0 which further widens the bandwidth.

![Fig. 4. (a) Input Impedance vs Frequency (b) Current vector distribution of Ant. 3](image)

In order to further validate the desired dual band characteristic of Ant.3, the simulated surface current distribution at 2.45GHz and 5.5GHz is shown and analyzed in Fig. 5. It is predominantly found that at 2.45GHz, the maximum current flows through the strip RS and relatively small current flows through vertical tuning stub ‘t’ which proves that strip RS and tuning stub ‘t’ contributes the Ant.3 to operate in F_1 band, whereas at 5.5GHz, the maximum current flows through the strip PQ and almost zero current flows through vertical tuning stub which proves that it only acts as a barrier which contributes the Ant.3 to operate in F_u band.

As Ant.3 operates in dual band with wider bandwidth and conforms to the requirement of WLAN and WiMAX operations in the laptop computers, it was selected for further testing and will be referred as presented antenna in the further section.

![Fig. 5. Simulated surface current (A/m) distribution (a) at 2.45GHz and (b) 5.55GHz of the presented antenna](image)

3. **Parametric Analysis**

The important parameters selected for parametric analysis are an open ended vertical tuning stub ‘t’ and varying ‘L_x’ for mounting the presented antenna on the system ground. It also includes the analysis of ‘Effect of varying the sizes of system ground’ on S_{11}(dB) and impedance bandwidth across two bands of interest of the presented antenna to check its suitability for other portable devices.

3.1 The effect of varying length ‘t’ of tuning stub:

The varying length ‘t’ mainly affects the resonances of operating bands. From Fig.6, it is evident that as the value of ‘t’ increases, the resonance of 2.9GHz and 5.8GHz shift towards the lower frequency. At ‘t’ of 4.5mm, the desired resonances of 2.45GHz and 5.5GHz are obtained with desired bandwidth.

![Fig. 6. Effect of varying ‘t’ on performance of the presented antenna](image)

3.2 The effect of varying distance ‘L_x’:

The effect of varying ‘L_x’ for mounting the presented antenna on the system ground, over F_1 and F_u bands are analyzed in Fig. 7. It is confirmed that, the mounting of the presented antenna at any place on the top edge of system ground, does not affect the performance of the presented antenna. In our design L_x is chosen to be 35mm from left, by keeping in mind that the top left edge is normally reserved for installing the laptop assembly and center space is reserved for embedding the
camera.

Fig. 7. Effect of varying ‘Lx’ on performance of the presented antenna

3.3 The effect of varying the sizes of the system ground:
To contemplate the effect of varying sizes of the system ground (display screen) on the presented antenna, few standard sizes “5-inch” (Mobile), “10-inch” (Tablet/Notebook) and 14-inch” (Laptop) of display screen are compared with the existing system ground. Fig. 8 confirms that the presented antenna performs equally well for different sizes of the system ground with negligible effect on impedance bandwidth.

Fig. 8. Effect of varying size of system ground (display screen) on the performance of the presented antenna

Therefore, from the parametric study and using optimization technique in CST, the optimized parameters are specified in Table I.

Table I. Optimized parameters of proposed antenna.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (mm)</th>
<th>Parameter</th>
<th>Value (mm)</th>
<th>Parameter</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.5</td>
<td>L6</td>
<td>1.0</td>
<td>W4</td>
<td>1.2</td>
</tr>
<tr>
<td>L2</td>
<td>14</td>
<td>Lx</td>
<td>35</td>
<td>W5</td>
<td>1</td>
</tr>
<tr>
<td>L3</td>
<td>4</td>
<td>W1</td>
<td>1</td>
<td>W6</td>
<td>1</td>
</tr>
<tr>
<td>L4</td>
<td>7.5</td>
<td>W2</td>
<td>1.1</td>
<td>T</td>
<td>4.5</td>
</tr>
<tr>
<td>L5</td>
<td>17.5</td>
<td>W3</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Experimental Results and Discussion

The presented prototype with optimal dimensions cataloged in Table I, was fabricated and tested as shown in Fig. 9. As discussed earlier coaxial cable was used for feeding as it is robust, offers convenience to select the feed point along with a good level of performance. A very small length of cable of 10cm was used as a smaller length of cable tends to smaller losses and higher performance. The diameter of coaxial cable was 1.8mm with a maximum operating frequency up to 8GHz. One probable factor to be considered while using coaxial cable is that the unbalanced current can flow through the outer conductor and form a standing wave on the feeding cable which further result in secondary radiation and affects the performance by increasing the losses and attenuation. In order to avoid this, the co-axial cable should be completely routed over the system ground. To do this, the most important parameter to be considered is the bending radius. Even though every coaxial cable has a bending radius, the bending should be as minimum as possible, as bending of coaxial cable can further increase the losses and attenuation, further affecting the performance, even if it is within the defined bending radius. Hence, the co-axial cable was routed with minimum bend to overcome the effect of standing waves and to get maximum performance. A network analyzer up to 16GHz was used to measure VSWR and \(S_{11} \) (dB). The radiation performance, including radiation patterns, gain and radiation efficiency were measured in the calibrated anechoic chamber of size 8x4x4 m³.

Fig. 9. Fabricated photo of the presented antenna

4.1 Characteristics of \(S_{11} \) (dB)
Fig. 10 presents the simulated and measured \(S_{11} \) (dB) values of the presented antenna and their comparison in Table II. A minimal deviation is observed which may be
due to soldering and fabrication tolerance. However, both the simulated and measured \(F_1 \) and \(F_2 \) bands cover 2.4/5.2/5.8GHz WLAN and 5.5GHz WiMAX bands with wider bandwidth.

![Fig. 10. Comparison of simulated and measured reflection coefficient](image1)

Table II. Comparison of \(S_{11} \) (dB) and operating bands of the presented antenna for VSWR < 2

<table>
<thead>
<tr>
<th>Amplitude (dB)</th>
<th>Operating Bands (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated</td>
<td>-23 -25 2.39-2.65 4.96-5.92</td>
</tr>
<tr>
<td>Measured</td>
<td>-22 -23 2.35-2.63 4.92-5.94</td>
</tr>
</tbody>
</table>

4.2 Radiation Patterns
A good agreement between simulated and measured radiation patterns of the presented antenna in the x-y plane at 2.45 GHz and 5.5 GHz is found in Fig. 11. At these frequencies, the measured patterns are smooth and clean due to proper routing of coaxial cable. \(E_\phi \) patterns are bidirectional and radiate more energy in a horizontal direction which ensures maximum energy for WLAN/WiMAX applications in the laptop computer, whereas \(E_\theta \) radiation patterns are nearly omnidirectional and hence, can be used for broad coverage of the area.

![Image of radiation patterns](image2)

4.3 Simulated and Measured Gain and Efficiency
The gain measurement requires same facility as radiation pattern measurement and is based on Friss transmission equation as expressed in (3).

\[
G_{2dB} = 20\log_{10}\left(\frac{\lambda}{4r}\right) + 10\log_{10}\left(\frac{P_2}{P_1}\right) - (G_{1dB})
\]

where, \(G_{2dB} \) and \(G_{1dB} \) are gain of presented and the reference antenna respectively, \(r \) is distance between the reference and presented antenna, \(p_2 \) and \(p_1 \) are received and transmitted power of presented and reference antenna, respectively.

The simulated and measured values of gain and efficiency for the presented antenna are graphically expressed in Fig. 12 and their comparison in Table III. A small deviation between simulated and measured values is seen because simulation is done under ideal conditions. This deviation can be acceptable for wireless operations in the laptop computers. However, Table III concludes that the presented antenna exhibits stable gain and excellent efficiency in both operating bands \(F_1 \) and \(F_u \), proving that it has a good signal reception quality which is required for wireless operations in the laptop computer.

Table III. Comparison of simulated and measured gain and efficiency

<table>
<thead>
<tr>
<th>Operating bands(GHz)</th>
<th>Gain (dBi)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulated</td>
<td>Measured</td>
</tr>
<tr>
<td>(F_1)</td>
<td>4.30-4.35</td>
<td>4.09-4.26</td>
</tr>
<tr>
<td>(F_u)</td>
<td>4.06-4.45</td>
<td>3.93-4.25</td>
</tr>
</tbody>
</table>

![Fig. 12. Simulated and measured gain and efficiency of the presented antenna (a) in \(F_1 \) band (b) in \(F_u \) band](image3)
5. Concluding Remarks

A novel, very low profile and ultra-thin inverted 'E' shaped monopole antenna 20x60x0.2mm³ exhibits the measured wide impedance bandwidth of 11.24% (2.35-2.63) GHz in lower band (F₁) and 18.78% (4.92-5.94) GHz in the upper band (F₂) for VSWR<2. Hence, the presented antenna covers the standard bandwidth requirement of 2.4/5.2/5.8GHz WLAN and 5.5GHz WiMAX bands for wireless applications in the laptop computer. It also satisfies the required radiation performance for the desired F₁ and F₂ bands confirming good quality of signal reception for wireless operations in the laptop computers. Therefore, because of a very low profile, ultra-thin, low cost, better performance and faster time to market, the presented antenna is a good candidate for modern ultra-thin laptops.

References