High frequency and high efficiency DC-DC converter with sensorless adaptive-sizing technique

Xin Cheng¹, Wanjing Shao¹, Yongqiang Zhang¹, Jianmin Zeng¹, and Zhang Zhang¹a)

Abstract A high frequency and high efficiency DC-DC converter with sensorless adaptive-sizing technique is proposed. Instead of conventional adaptive-sizing technique with current sensor, the proposed converter estimates the load current according to the output voltage of error amplifier for switch scaling. The elimination of current sensor reduces power consumption, thus improving efficiency further. This design is validated through simulation in a 0.18 μm CMOS process. At switching frequency of 150 MHz and light-load of 20 mA, the proposed converter achieves a high efficiency of 82.4%, while it is 73.7% with conventional adaptive-sizing technique, and 62.4% without adaptive-sizing technique.

key words: DC-DC converter, high frequency, light-load efficiency, adaptive-sizing, sensorless

Classification: Integrated circuits

1. Introduction

In DC-DC converters, light-load efficiency which is highly related to battery lifetime for portable devices, is much lower than heavy-load efficiency due to the higher ratio of power loss to output power at light-load [1, 2, 3, 4]. On the other hand, DC-DC converters with high switching frequency at tens or hundreds of megahertz have obtained wide research attention, due to their advantages of high integration level and high power density [5, 6, 7, 8]. However, high switching frequency also increases switching loss and harms efficiency especially light-load efficiency [9, 10, 11, 12]. Therefore, efficiency improvement is more strongly required for light-load and high frequency applications [13, 14, 15, 16]. Adaptive-sizing technique is presented as an efficient way to improve light-load efficiency [17, 18, 19]. It usually utilizes a current sensor to sample the load current for power transistor size selection [20, 21, 22]. However, introducing current sensor suffers from power loss and circuit delay, which is more serious for high efficiency and high frequency applications [23]. To improve the efficiency while not sacrificing other performance of DC-DC converter, a novel and simple method of sampling load current is proposed in this letter. This method estimates the load current according to the output voltage of error amplifier, rather than by current sensing circuit.

2. Conventional adaptive-sizing technique with current sensor

At light-load condition, DC-DC converter is often operated in discontinuous conduction mode (DCM) [24, 25, 26]. For DCM converter, the switching loss of power transistor P_{sw} can be expressed as

$$P_{sw} = C_{gate}V_{DD}^2f_{sw}. \quad (1)$$

where C_{gate} is the total capacitance of power transistors and their drivers, V_{DD} is the supply voltage and f_{sw} is the switching frequency.

And the conduction power loss P_{cond} is given by

$$P_{cond} = I_L^2(D_1R_{on,p} + D_2R_{on,n} + R_L). \quad (2)$$

where I_L is the average inductor current, D_1 and D_2 are the duty cycles of increasing and decreasing inductor current respectively, $R_{on,p}$ and $R_{on,n}$ are the on-resistances of power transistors PMOS and NMOS, and R_L is the equivalent series resistance (ESR) of inductor.

It can be seen that both P_{sw} and P_{cond} are relative to the sizes of power transistors. Specifically, C_{gate} and hence P_{sw} are proportional to transistors widths, while $R_{on,p}$ and $R_{on,n}$ are inversely with transistors widths. Therefore, the optimum widths of transistors are existed to balance P_{sw} and P_{cond}, thus making the total power loss minimum. Since the optimum widths of transistors are proportional to load current which will be shown in next section, adaptive-sizing technique is implemented by selecting the optimum widths of transistors at different loads. Conventional adaptive-sizing technique usually utilizes current sensor to sample the load current, which increases both power loss and circuit delay.

3. The proposed sensorless adaptive-sizing technique

A buck converter based on the proposed sensorless adaptive-sizing technique is shown in Fig. 1. This design estimates the load current by comparing the output voltage of error amplifier V_{ea} with three reference voltages $V_{ref1} \sim V_{ref3}$, then...
adaptive-sizing logic selects the optimum group of transistors according to the comparison results. Meanwhile, a high accuracy delay-compensated ramp generator similar to the one in [27] is used for high frequency application, and a DCM control block is added to guarantee DCM operation.

![Diagram](image)

Adaptive-sizing technique

Fig. 1. Buck converter based on sensorless adaptive-sizing technique.

Considering the complexity of design and the larger current per unit width of NMOS power devices, only the sizes of PMOS devices and their drivers are optimized in this work. So only the conduction loss of PMOS transistor $P_{cond,p}$ is taken into account

$$P_{cond,p} = \frac{I^2_{PMOS}}{\mu_p C_{ox} W_p (V_{DD} - V_{TP})}. \quad (3)$$

where I_{PMOS} is the root mean square (RMS) current in the PMOS transistor, μ_p is the hole mobility, C_{ox} is the gate oxide capacitance per unit area, W_p and L are the width and length of the PMOS transistor, and V_{TP} is the threshold voltage of the PMOS transistor.

It can be calculated that the approximate optimum width $W_{p,\text{opt}}$ is

$$W_{p,\text{opt}} = \frac{I_{PMOS}}{C_{ox} V_{DD}} \sqrt{\frac{1}{\mu_p (V_{DD} - V_{TP}) f_{sw}(1 + \frac{1}{f} + \frac{1}{f^2} + \cdots)}}. \quad (4)$$

where f is the fan-out factor of the tapered buffer design. From Eq. (4), the optimum width of PMOS transistor can be scaled proportionally to I_{PMOS}, and also to the load current I_o. Since adaptive-sizing is mainly used to improve light-load efficiency [28, 29, 30], the value of I_o in DCM should be estimated for switch scaling.

Actually, as Fig. 2 shows, the variation of I_o yields different steady state values of V_{ea} in DCM, while it does not stand in continuous conduction mode (CCM). Furthermore, the duty cycle D_1 in CCM buck converter is

$$D_1 = \frac{V_o}{V_{in}}, \quad (5)$$

which means that D_1 only depends on input voltage V_{in} and output voltage V_o, and it is irrelevant to load current. Instead, the duty cycle in DCM buck converter is expressed as

$$D_1 = \frac{2LV_o I_o}{V_{in}(V_{in} - V_o)T}. \quad (6)$$

where L is the inductor and T is the switching period. It means that D_1 is determined not only by V_{in} and V_o, but also by I_o. Therefore, with varied load currents, different values of D_1 are obtained by regulating V_{ea}, thus regulating the position of the intersection point between V_{ea} and the ramp signal. Specifically, larger I_o means larger D_1 and larger V_{ea}, as Eq. (6) and Fig. 2(b) show. Hence, the value of I_o can be estimated indirectly according to V_{ea}, for establishing the optimum width $W_{p,\text{opt}}$.

![Plots](image)

Fig. 2. Plots of main signals at steady state with different I_o (a) in CCM, (b) in DCM.

In this design, by comparing V_{ea} with three reference voltages $V_{ref1} \sim V_{ref3}$ ($V_{ref1} < V_{ref2} < V_{ref3}$), four sizes of PMOS transistors 1X, 4X, 7X and 10X are scaled. When V_{ea} is larger than V_{ref3} which means heavy load and CCM operation, the PMOS transistor is scaled as 10X. When V_{ea} is less than V_{ref3} which means light load and DCM operation, it is re-compared with V_{ref1} and V_{ref2}, to choose the optimum size among 1X, 4X and 7X. This method of indirectly estimating the load current is appropriate here, since the
load current is used only to choose the corresponding size of transistor in adaptive-sizing technique, and its accuracy requirement is not stringent.

4. Circuit implementation and simulation results

In this work, a 150 MHz switching frequency, 1.8 V input voltage and 1.2 V output voltage buck converter with the proposed adaptive-sizing technique is designed and simulated in a 0.18 µm CMOS process. The simulated plots of main signals are shown in Fig. 3, which are the load current I_o, the output voltage of error amplifier V_{ea}, the gate signals V_{PG} of three PMOS transistors whose widths are 2 mm, 6 mm, 12 mm, and the output voltage V_o respectively. It can be seen that V_{ea} varies proportionally with I_o, and switch scaling is implemented according to the value of V_{ea}. At light load condition, only the transistor with 2 mm width is turned on, thus the total size of PMOS is 2 mm. For heavier loads, the total size of PMOS becomes $8 (= 2 + 6)$ mm, $14 (= 2 + 12)$ mm and finally $20 (= 2 + 6 + 12)$ mm. In this way, by configuring the three transistors, four sizes 1X, 4X, 7X and 10X are realized.

![Fig. 3. Simulated waveforms of main signals in designed converter.](image1)

Three buck converters which respectively apply the proposed sensorless adaptive-sizing technique, conventional adaptive-sizing technique with the current sensor in [28] and no adaptive-sizing technique are simulated in Fig. 4. Compared with the other two converters, the light load efficiency at 20 mA is improved by 8.7% (73.7% to 82.4%) and 20% (62.4% to 82.4%) with the proposed technique. A peak efficiency of 89.2% occurs at load current of 260 mA. Furthermore, the efficiency can maintain constant over a wide range of load current. The comparison results with previous works are listed in Table I. The results demonstrate that the proposed converter has a higher efficiency under light-load condition.

![Fig. 4. Plots of efficiency versus load current in different converters.](image2)

<table>
<thead>
<tr>
<th>Table I. Performance comparison with previous works</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>(fixed)</td>
</tr>
<tr>
<td>Inductor</td>
</tr>
<tr>
<td>Input voltage</td>
</tr>
<tr>
<td>Output voltage</td>
</tr>
<tr>
<td>Load</td>
</tr>
<tr>
<td>Efficiency</td>
</tr>
</tbody>
</table>

*simulation results

5. Conclusion

This letter proposes a DC-DC converter with sensorless adaptive-sizing technique. The elimination of current sensor saves power loss and reduces circuit delay, which makes it more preferable for high efficiency and high frequency applications. Simulation results show that the efficiency can be improved up to 20% with a load current of 20 mA, by the proposed technique.

Acknowledgments

This work was supported by National Natural Science Foundation of China (61674049), and the Fundamental Research Funds for the Central Universities of China (JZ2019HGTB0092, PA2018GDQT0017).

References

