1. Introduction

Negative expressions such as nobody, nothing, no (as determiner), never and nowhere and their counterparts in other languages are what the author of the book under review calls “negative indefinites” (NIs), following Haspelmath (2005). They are the same as negative polarity items (NPIs) in that they co-occur with a negative marker such as not; nonetheless, they are different. For one thing, NIs can be used as fragmentary answers to wh-questions while NPIs cannot:

(1) A: A quién viste? (Spanish)
 to who saw.2SG
 ‘Who did you see?’
 B: A no se. (NI)
 to n-person
 ‘Nobody.’
 B: *A un alma (NPI)
 to a soul
 ‘A soul.’ (p. 26)

By analyzing comprehensive data of European languages, the book aims to show that NIs do not differ cross-linguistically: they are existential quantifiers, and must be licensed by a negation operator. Furthermore, the scope of negation is independent of the position where negation is morphologically marked. In other words, there is justification for a covert negation operator

* I am very grateful to two anonymous EL referees for stylistic suggestions and pointing out content-related shortcomings. This review has become more precise and detailed due to them. I would also like to thank Liang Chua Morita for suggesting stylistic improvements.
The book is organized as follows. Chapter 1 is an introduction. In Chapter 2, negation in European languages is classified and discussed. In Chapter 3, the author shows that the analysis in Chapter 2 helps to account for a scope splitting phenomenon in German. In Chapter 4, other types of quantifiers are analyzed, which independently show scope splitting. In Chapter 5, NIs in Scandinavian languages are discussed. In Chapter 6, other kinds of semantic accounts of NIs are critically examined. In Chapter 7, Penka defends her claim that NIs are existential quantifiers despite the fact that exceptive phrases and almost cannot modify existential quantifier phrases. Chapter 8 is the conclusion.

In this review paper, I will focus on Chapters 2, 3, and 5, and present a few suggestions along the way.

2. Negative Concord (Chapter 2)

2.1. Classification

Languages are divided into two categories based on how two (or more) negative constituents, such as negative markers and NIs, in a clause are interpreted. One type is where despite two negations, only one negation is interpreted, which is called NC (negative concord). The other is where two negations cancel each other, so that the meaning becomes positive, which is called DN (double negation). Examples of NC are the following:

(2) a. Maria non ha visto nessuno. (Italian)
 Maria NEG has seen n-person
 ‘Maria hasn’t seen anybody.’
 *‘Maria hasn’t seen nobody.’ (= ‘Maria has seen somebody.’)
 (p. 14)

b. Nessuno ha visto niente.
 n-person has seen n-thing
 ‘Nobody has seen anything.’
 *‘Nobody has seen nothing.’ (= ‘Everybody has seen something.’)
 (p. 14)

In (2a), one negative marker, non, and one NI, nessuno, are employed, and in (2b), two NIs are used. Nevertheless, the two negative constituents in each example do not cancel each other and only one negation is interpreted.

On the other hand, examples of DN are as follows:
(3) a. I didn’t see nobody.
 = ‘I saw somebody.’

b. Nobody didn’t come.
 = ‘Everybody came.’

c. Nobody has seen nothing.
 = ‘Everybody has seen something.’ (p. 15)

English, German, and Dutch among others show this effect.

NC languages are further divided into two groups. In one group, a negative marker is obligatory whether NIs are preverbal or not as in (4):

(4) a. Ja nikogo *(ne) vižu. (Russian)
 I n-person NEG see.
 ‘I don’t see anyone.’ (Brown (1999: 40))

b. Nimeni *(nu) vasu nimic. (Romanian)
 n-person NEG saw.3.SG n-thing
 ‘Nobody saw anything.’ (Bernini and Ramat (1996: 18))

Following Giannakidou (2006), the author calls them strict NC languages, and Slavic languages such as Polish, Romanian and Greek belong to this group.

In contrast, languages in the other group do not require the presence of a negative marker when NIs are preverbal as follows:

(5) a. *(No) vino nadie. (Spanish)
 NEG came n-person
 ‘Nobody came.’

b. Nadie (*no) vino.
 n-person NEG came
 ‘Nobody came.’

c. Nadie (*no) ha comido nada.
 n-person NEG has eaten n-thing
 ‘Nobody has eaten anything.’ (p. 17)

(5a) shows that a negative marker, no, must be present when NIs are in postverbal positions, which is the same as in strict NC languages. However, when NIs are preverbal as in (5b) and (5c), no cannot co-occur with them. Following Giannakidou (2006), the author calls this group non-strict NC languages.

2.2. Three Kinds of Approaches

To explain the diverse phenomenon involving NIs above, three types of accounts have been proposed. One is to regard NIs as NPIs. Another is to consider NIs as negative quantifiers. The third one is to assume that NIs
enter agreement with a covert negation operator. The author employs the third approach and presents problems with the other two approaches.

2.2.1. NIs as NPIs

Laka (1990) and Giannakidou (1998, 2000) argue that NIs and NPIs are the same. Apart from the fact that they co-occur with negative markers, they can appear under negative prepositions such as sin ‘without’ in Spanish, adversative predicates, and comparatives.

However, the author presents a few differences between the two items. First, NIs can be used as fragmentary answers to wh-questions while NPIs cannot as in (1). Second, NPIs can be used in antecedents of conditionals, but NIs cannot. Third, a locality condition (or so called clause-mate condition) is imposed on NIs, but not on NPIs as follows:

(6) a. I didn’t say that there was any food in the refrigerator.
 b. *No dije que había nada en el frigorífico. (Spanish)

Moreover, the approach taken by Laka and Giannakidou cannot explain why a negative marker cannot co-occur with an NI when the latter is preverbal in non-strict NC languages.

2.2.2. NIs as Negative Quantifiers

Zanuttini (1991), Haegeman and Zanuttini (1991, 1996) and Haegeman (1995) treat NIs as negative quantifiers. More specifically, they claim that the following criterion must be observed when NIs are used:

(7) The NEG-criterion (Haegeman (1995: 134))
 a. A NEG-operator must be in a Spec-head configuration with an X⁰ NEG.
 b. An X⁰ NEG must be in a Spec-head configuration with a NEG-operator.

NIs, being NEG-operators, must be in the spec of NegP.

The author does not think that this approach is tenable for several reasons. First, if the head of NegP represents (semantic) negation, NIs in the spec must take scope over the head. Thus, to provide appropriate semantic representations, they must be regarded as universal quantifiers. However, Penka argues that NIs are etymologically existential quantifiers, and it is difficult to account for scope split in German if NIs are universal quantifiers,
which will be discussed later.

In addition to the problems above, the negative quantifier approach must assume an ad hoc mechanism called Neg-absorption to explain negative concord, which changes multiple semantic features of negation into single negation. For example, even if there are three negations in a clause, only one negation is interpreted after Neg-absorption. What is problematic is that a negative marker in Neg⁰ also joins Neg-absorption through Spec-head agreement. However, negation is a semantic feature, so it is not clear how this semantic feature disappears.

2.2.3. NIs as a Reflex of Agreement

Due to the problems with the two approaches, the author follows Zeijlstra (2004), who argues that NIs, which are semantically non-negative, enter a syntactic relationship (i.e. agreement) with a covert negation operator.

2.2.3.1. Zeijlstra (2004)

Zeijlstra claims that NIs have an uninterpretable feature, [uNEG], and elements carrying a semantic feature of negation have an interpretable feature, [iNEG]. The latter feature licenses the former through c-command. What is notable is that an element with [iNEG], i.e. a negation operator, can be covert.

The difference between strict and non-strict NC is explained as follows. In strict NC languages, an abstract negation operator (Op¬) with [iNEG] is adjoined to a projection where it c-commands and checks a negative marker as well as NIs, both of which carry [uNEG]. On the other hand, in non-strict NC languages, a negative marker can serve as a negation operator and can have [iNEG] unlike in strict NC languages, so it can license [uNEG] of NIs when the NIs are postverbal. However, when NIs are preverbal, a negative marker cannot license them. Thus, the same covert negation operator as the one in strict NC is adjoined to a position higher than the preverbal NIs and licenses them. This is why a negative marker is unnecessary in non-strict NC languages when NIs are preverbal. In this way, the difference between strict and non-strict NC is attributed to the difference of the negative markers’ ability to have the [iNEG] feature.

Moreover, since licensing of NIs involves agreement, the clause-mate condition of NIs naturally follows. In addition, since NIs are not semantically negative, the fact that the presence of multiple NIs does not end up being double negation is naturally accounted for with the mechanism of multiple Agree proposed by Ura (1996) and Hiraiwa (2001). This approach can also
REVIEWS

easily explain fragmentary answers as in (1).

Despite the advantage mentioned above, a few problems remain. One big problem is expressed in Penka’s remark, “If semantic operators are not visible, how does one know that they are there?” (p. 50). In other words, if there is a covert semantic negation operator, a sentence such as, “Mary saw John,” may well mean that Mary did not see John, which is never the case. The author attributes this to an economy condition following Zeijlstra (2004), who claims that a covert negation operator is introduced only when elements with [uNEG] are included in the derivation. In other words, it is against the economy principle to introduce a covert operator with [iNEG] if there is no element with [uNEG] in the derivation. However, Penka does not specify what will happen if a covert operator with [iNEG], but not an element with [uNEG], is included in the derivation. [iNEG] of a covert operator is a semantic, hence interpretable, feature, so the derivation will succeed even if an element with [uNEG] is not included in the derivation. Therefore, there is no reason for a derivation to include an element with [uNEG] in the first place unless there is a rule that interpretable formal features must check their uninterpretable counterparts, which is not attested.

A second problem is that according to the proposal, a negative marker, which has [uNEG], is totally redundant in strict NC languages. A covert operator with [iNEG] and NIs with [uNEG] seem to be sufficient, so it is not clear why a negative marker is necessary in strict NC. Penka (2011: 55) ends up saying “It seems that there is something like a principle in the grammar requiring this functionally redundant marking on the verb of a negated clause.”

A third problem is that feature checking between [iNEG] and [uNEG] is assumed to take place in surface syntax (p. 81). As a result, a negative marker, which is normally placed before a verb, will not c-command a subject NI in surface syntax, and hence, cannot license it. (As a result, a covert negation operator is employed and adjoined to T or C). However, if the VP-internal subject hypothesis is correct, a negative marker can c-command and initiate agreement with a subject, so it is not clear why it waits until it misses the opportunity.

Here I would like to make a few suggestions. Negation is a semantic concept, but without phonological features, no one but the speaker can know whether a sentence is negated or not. It may thus be a good idea to introduce a PF feature in a covert operator, say [NEG(p)], which requires overt negative elements such as NIs and negative markers to be adjacent to it. Suppose a covert negation operator has [iNEG, NEG(p)]. Then
NIs with [uNEG] can be licensed by [iNEG] of the covert operator through Agree. However, [NEG(p)] remains unchecked. To check this feature (possibly at PF), either an NI or a negative marker must be adjacent to the covert operator. This is why a negative marker is unnecessary if an NI is preverbal in non-strict NC languages because the NI, being adjacent to the operator in Neg0, can check [NEG(p)] of the operator. In the case of strict NC languages, one can propose that there is no covert negation operator, unlike the author’s claim. Instead, a negative marker is a head (Neg0) and carries [iNEG], so that it has to be employed to license NIs. Thus, a negative marker in strict NC languages will not be redundant at all.

2.2.3.2. Negative Concord in French

The author discusses negative concord in French and claims that the features proposed by Zeijlstra (2004) are not sufficient to explain French data. The facts about French NC are (i) that ne is always necessary in the clause where NIs are employed and (ii) that pas cannot co-occur with NIs. Penka assumes that pas, which is thought to carry a semantic feature of negation (cf. Rowlet (1998)), has [iNEG], so it is expected to license NIs contrary to the fact. To resolve this problem, Penka introduces another pair of features, [uNEGØ] and [iNEGØ], which are possessed by an NI and a covert negation operator respectively. [uNEGØ] of NIs cannot be checked by [iNEG] of pas, so that pas cannot co-occur with NIs.

However, this solution seems a little simplistic in that a further division of features is made only to explain the French data. Moreover, [uNEG] can be checked by [iNEGØ] as well as [iNEG]. If so, ne, which possesses [uNEG], would be expected to be licensed by [iNEGØ] of a covert operator. This implies that negative sentences can be uttered with ne alone in French, which is not the case.

Here I would like to make another suggestion. Instead of inventing more features, one could argue that pas, which has [iNEG], is an adverb and joins to VP (or NegP), so that it cannot agree with NIs. According to Chomsky (2004: 11), Agree is initiated between a probe and a goal, and a probe is supposed to be head. Thus, pas, being an adjunct, could not enter

1 As pointed out by an EL reviewer, this proposal will meet a problem when one considers the fact that NIs alone are sufficient as fragmentary answers, as given in (1). To solve this issue in the new proposal, one has to speculate that a negation operator has to be covert if it is in C. Penka’s claim (pp. 59–60), on the other hand, does not face a problem on this matter because a covert operator is assumed.
Agree with NIs although it might c-command them. This is why *pas* cannot be used with NIs although it can express negation by itself. Therefore, instead of *pas*, a covert negation operator, which is Neg⁰ and carries [iNEG, NEG(p)], should be employed to license NIs. *Ne* is necessary to check [NEG(p)] of the operator.

3. NIs in German (Chapter 3)

One of the biggest advantages in assuming that negation operators and NIs are independently generated, the latter of which are simply existential quantifiers, is that it is easy to account for split scope in German. Consider the following examples:

(8) Bei der Prüfung muss kein Professor answered sein.
 at the exam must n-DET professor present be
 a. ‘It is not required that there be a professor present.’
 ¬>must>∃
 b. ‘There is no professor who is required to be present.’
 ¬∃>must
 c. ?? ‘It is required that there be no professor present.’
 ?? must>¬∃ (p. 89)

(9) Peter sucht kein Einhorn.
 seeks n-DET unicorn
 a. ‘Peter isn’t trying to find a unicorn.’ ¬>seek>∃
 b. ‘There is no unicorn Peter is trying to find.’ ¬∃>seek
 (p. 96)

As (8a) shows, the scope of the negation operator and that of the existential quantifier are separated by that of a modal. Similarly, as in (9b), an intensional verb can take scope between a negation operator and an existential quantifier. These readings are very difficult to explain for those who regard NIs as negative quantifiers or universal quantifiers. On the other hand, they are easily accounted for in the author’s proposal because NIs themselves are not negation operators. Moreover, this shows that NIs receive a uniform treatment cross-linguistically, which is a welcome result.

4. Restricted Use of Object NIs in Scandinavian Languages (Chapter 5)

NIs in Scandinavian languages, although they are DN languages like German, are distributionally restricted in comparison to German. Specifically, NIs in object positions are subject to more restrictions. Examine the fol-
lowing Norwegian sentences:

(10) a. Jon leser ingen romaner. (p. 174)
 Jon reads n-DET novels
 ‘Jon doesn’t read (any) novels.’

b. *Dette er en student som leser ingen romaner. (p. 174)
 this is a student who read n-DET novels
 ‘This is a student who doesn’t read (any) novels.’

c. *Jon har lest ingen romaner. (p. 174)
 Jon has read n-DET novels
 ‘Jon hasn’t read (any) novels.’

d. *Jon har ingen romaner lest. (p. 176)
 Jon has n-DET novels read
 ‘Jon hasn’t read (any) novels.’

(10b) shows that object NIs cannot be used in embedded clauses, and (10c) indicates that a participle verb cannot be placed before object NIs. The author claims NIs in Scandinavian must be right-adjacent to a covert negation operator. Suppose that the negation operator adjoins to VP in (10). Example a is fine because Norwegian is a V2 language, so the finite verb is raised to C and the adjacency condition between the operator and the object NI is met. This explanation also accounts for example b because the finite verb does not move to C in embedded clauses, so it intervenes between the operator and the NI. A similar explanation holds in example c.

In contrast, following Zanuttini (1991), Haegeman and Zanuttini (1991, 1996) and Haegeman (1995), Svenonius (2002) and Christensen (2005) consider that the same kinds of examples can be accounted for if NIs are raised to the spec of NegP, which is located between TP and VP, to satisfy the NEG-criterion (cf. (7)). Although the NIs as negative quantifiers approach can account for (10c), the ungrammaticality of (10d) remains to be a problem.\footnote{Actually this example is possible if it is understood as archaic or literary style, but not possible in colloquial Norwegian, as discussed in the book (p. 176).} Svenonius (2002) argues that movement of NIs is regulated by Holmberg’s Generalization in that they cannot cross any item inside VP, so that (10d) is ungrammatical. Thus, the account by Svenonius (2002) and Christensen (2005) seems to be tenable.

However, the author presents a few problems with the NIs as negative quantifiers account. The first problem is semantic and has already been discussed in section 2.2.2. The second problem is the fact that if the object
NI in (10c) goes through Topic movement, the example becomes grammatical as follows:

(11) Ingen romaner har Jon lest.
 n-DET novels has Jon read
 ‘Jon hasn’t read (any) novels.’ (p. 188, Christensen (1986: 21))

As to this phenomenon, the author argues that a covert negation operator is adjoined to CP, so the adjacency condition is satisfied. However, this example is problematic for Svenonius (2002) and Chirstensen (2005), who must assume that the NI is first raised to the spec of NegP before Topicalization, and hence, the example should be ungrammatical due to violation of Holmberg’s Generalization. Consequently, the author considers that the NIs as negative quantifiers account does not hold, even in Scandinavian languages.

Nevertheless, two problems can be raised with the author’s approach. First, her explanation of the adjacency condition, which also holds in German, is not clear. She argues that it must be satisfied in surface syntax, but is not a PF condition because “the licenser itself is phonologically empty and hence not visible at PF” (fn. 15, p. 110). However, it also seems problematic to claim that the syntax requires NIs in Scandinavian to be right-adjacent to a covert negation operator. In other words, if syntactic movement is applied to an NI, it should appear at the left side of the operator. Accordingly, Christensen (1986) and Dahl (1993) argue that NIs in Scandinavian are “post-syntactic amalgams of the negative marker and indefinites” (fn. 2, p. 178).

I have made a suggestion to Christensen (1986) and Dahl (1993) which should help here. That is, a covert negation operator has [NEG(p)], which is a PF feature and requires a negative element such as an NI or a negative marker to be adjacent to it. This phenomenon may be akin to the morphological merger between V and T in English, in which case T may be phonologically empty (e.g. present tense with a plural subject) and still go through morphological merger with V (possibly at PF) (Lasnik (2000)).

The second problem that arises is that the position where a negation operator is adjoined seems arbitrary. It can be VP, IP or CP. To restrict its occurrences, one could assume that the operator projects its own projection as NegP or those negative features carried by the operator (such as [iNEG, NEG(p)]) can be base-generated in phase heads (i.e. C and v), the availability of which is decided by parametric choices. By assuming so, it is easy to explain not only the cases such as (11) and fragmentary answers as in (1) but also cross-linguistic variations in terms of the position of negation.
In conclusion, although this book does not cover data outside European languages, it is very informative and it seems to have succeeded in providing a uniform account of NIs in European languages (with some minor modifications). Also, the scope splitting phenomenon in German, which has been problematic, receives a simple account in the author’s approach. As an added plus, for researchers of negation in non-European languages including Japanese, the claim that there is a covert negation operator may open up a completely new direction of study.

REFERENCES

HASPelmath, Martin (2005) “Negative Indefinite Pronouns and Predicate Negation,”

[received December 7 2011, revised and accepted June 4 2012]

Department of British and American Studies
School of Foreign Studies
Aichi Prefectural University
1522–3 Ibaragabasama, Nagakute-shi
Aichi 480–1198
hmorita@for.aichi-pu.ac.jp