Provocative Syntax

TAKAHIRO TOZAWA
Kitami Institute of Technology*

Keywords: provocation, provocative feature, copy, valuation, external merge

1. Introduction

One of the central issues in generative syntax is to provide a mechanism which accounts for the displacement property of human language. In the Minimalist framework, the displacement property is explained by the idea that an EPP feature attracts an element to the specifier position. However, there remains the question of why the EPP feature is necessary. Given this problem, it is hard to conclude that the mechanism of movement has been explained in a principled way. In the book under review, Provocative Syntax, Phil Branigan presents an alternative to EPP-driven movement, proposing a movement model which contains the syntactic operation called Provocation.

Although this book is full of theoretically insightful possibilities, we will not show full details of them. Rather, we would like to summarize Branigan’s major proposals and then make a number of short comments on his movement model. Hopefully, this discussion will elucidate his contribution to the theory of movement in generative grammar.

2. Overview

In chapter 1, Branigan lays out the background of this book. He begins the discussion by considering the force that drives movement. In Chomsky

* I would like to express my gratitude to Nobuhiro Miyoshi, Tadao Nomura, Hiroaki Emoto, Satoru Kanno, and two anonymous reviewers for invaluable comments and suggestions. I am also grateful to Christopher Bozek and Jennifer Claro for suggesting stylistic improvements. All errors are, of course, my own.

© 2013 by the English Linguistic Society of Japan
(2000), the trigger for movement is the EPP feature. The feature requires an element to occupy the specifier position. Then, the question arises of whether this is an LF requirement or a PF requirement. Branigan argues that the EPP requirement on the specifier position is neither a PF nor a LF requirement, based on the fact that the elements in the specifier of TP and CP can be null or be erased at PF/LF interface in certain cases. Given that the EPP is not an interface constraint, it must be a structural constraint on derivations. In other words, it must be a syntactic requirement that something should occupy the specifier position. After clarifying the status of the EPP, Branigan points out both conceptual and empirical problems with the EPP. The conceptual problem is that the EPP is ad hoc because it is posited merely to describe movement facts. Next, the empirical problem is head-movement. If movement is driven by EPP, an element should always move to a specifier position. However, head-movement is attested in various instances. While Chomsky (2001) claims that head-movement is a phonological operation, evidence for head-movement as a syntactic operation has been cited in the literature (Baker (1988), Zwart (2001)). As long as the argument that head-movement takes place in syntax is on the right track, not all types of movement are EPP-driven. Thus, these problems lead us to search for a new movement model.

In chapter 2, Branigan introduces his movement model. He argues that movement results from a syntactic operation called Provocation. This operation is a complex syntactic operation mainly consisting of Matching, Valuation, Copy, and Merge. Let us elaborate the movement mechanism with movement of the subject in (1).

(1)
\[TP \text{ Jenny}_i \text{ was } [vP \text{ t}_i \text{ putting up the tent}] \]

Consider the structure at the stage of the derivation where T is merged with vP.

(2)
\[TP [T \text{ was}[u-\varphi^+]] [vP [DP \text{ Jenny}[\varphi]] [v \text{ putting up the tent}]] \]

\[\underline{\text{Match}} \quad \underline{\text{Copy}} \]

\[[DP \text{ Jenny}[\varphi]] \]

Suppose that the features which require the creation of the copy of the goal are provocative features (P-features). Let us indicate the P-feature with a superscript “+.” In (2), the unvalued \(\varphi \)-features in T have the provocative nature, which is notated by \(u-\varphi^+ \). This \(u-\varphi \) probe searches its c-command domain for an element with valued \(\varphi \)-features and enters the matching relation with the \(\varphi \)-features of the subject Jenny. Since the \(u-\varphi \) probe is
provocative, it requires that a copy of the goal be made. Then, the copy occurs as an independent P-marker. Thus, we have the two P-markers: the one headed by D and the other headed by T. After valuation of the probe, External Merge of TP and DP takes place since two P-markers cause a crash at the PF and LF interfaces.\(^1\) Then, we have the structure in (3).

\[
(3) \quad [\text{TP} \quad [\text{DP Jenny[φ]}] \quad [\text{T was [u-φ']}]] \quad [\text{vP} \quad [\text{DP Jenny[φ]}] \quad [\text{v putting} \quad \text{up the tent}]]
\]

As a result of Merge, the subject Jenny occupies the [Spec,TP]. We call this movement model the provocation model.

Let me provide a little more discussion on the provocation mechanism. The probe can also match a goal in a separately built phrase marker. Branigan notes that this matching occurs in Italian wh-questions using perché `why':

\[
(4) \quad \text{Perché Gianni è partito?}
\]

\[
\text{why} \quad \text{Gianni is left}
\]

`Why does Gianni leave?' \hspace{1cm} (p. 10)

According to Rizzi (1999), perché `why' is base-generated in the left periphery. Then, a question arises how the interrogative C probe can match the wh-feature of perché `why,' which is not in the c-command domain of the probe. Branigan argues that the probe finds its goal outside the P-marker headed by C, as shown in (5).

\[
(5) \quad [\text{CP} \quad [\text{C uwh}] \quad [\text{TP Gianni è partito}]] \quad [\text{Adv perché[wh]}]
\]

\[
\text{Match}
\]

The probe enters a matching relation with the wh-feature in the separate P-marker independently built from the Numeration. After valuation of the probe, the two P-markers merge, deriving the wh-question in (4).

Keeping the provocative model in mind, let us turn to German wh-movement. The provocation model is argued to offer an unproblematic derivation for complicated instances of movement like partial wh-movement in German in (6):

\[
(6) \quad \text{Was glaubst du wen Irina liebt?}
\]

\[
\text{what believe you who Irina loves}
\]

`Who do you believe that Irina loves?' \hspace{1cm} (p. 18)

\(^1\) Branigan does not specify why two P-markers lead to a crash at the PF and LF interfaces. One possibility is that they are not a single-rooted tree. Lasnik and Kupin (1977) exclude non-rooted trees ("forests"). This is formulated as the Single Root Condition of Partee et al. (1993). I thank Nobuhiro Miyoshi for suggesting this.
The true wh-phrase wen ‘who’ occupies the lower [Spec,CP], while the wh-expletive was ‘what’ occupies the higher [Spec,CP]. In partial wh-movement, there is a linking between the true wh-phrase and the highest [Spec,CP]: the true wh-phrase is interpreted in the highest [Spec,CP]. Branigan claims that the matrix C probe matches different (external/internal) goals (was ‘what’ and wen ‘who’) with partially shared properties. This is shown in (7).

\[(7) \quad [_{CP} C[uwh] \quad [_{TP} du glaubst \quad [_{CP} [wen[wh]], \quad [_{TP} Irina wen_i liebt]]]]
\]

The probe matches the internal wen ‘who’ and the external was ‘what’ at the same time, and the probe gets valued. Then, the unification of the two P-markers takes place. When the simultaneous valuation occurs, the two goals was ‘what’ and wen ‘who’ form a chain. Therefore, wen ‘who’ is interpreted in the matrix [Spec,CP] occupied by the chain member was ‘what.’ The wh-phrases was ‘what’ and wen ‘who’ are phonetically distinct, so both wh-phrases are pronounced. There are some differences between the provocative model and the EPP-driven movement model. First, there is no reference to the creation of a specifier in the present model. Rather, the specifier position is automatically formed by the unification of two P-markers. In this sense, “movement” is a by-product of Copying. Second, while the EPP always triggers XP-movement, the P-feature triggers head-movement when XP-movement is not allowed. Branigan argues that syntactic head movement is allowed, when the goal (head H) is “too close” to the probe (F^+), and the movement of the entire HP would violate the restriction against moving the complement of a head to the specifier of the same head, as in (8).

\[(8) \quad [_{FP} [F^+] \quad [_{HP} [H \quad [goal]]]]
\]

Branigan explains this using a V-to-v movement case.

\[(9) \quad a. \quad [_{TP} Jenny_i \quad was \quad [_{VP} t_i \quad putting \quad up \quad the \quad tent]]
\]
\[b. \quad [_{VP} Jenny \quad [v \quad [uRoot]] \quad [_{VP} up \quad [V \quad put[Root]] \quad the \quad tent]]
\]
\[c. \quad [_{VP} Jenny \quad [v \quad [uRoot] \quad [V \quad put[Root]]], \quad [_{VP} up \quad t_i \quad the \quad tent]]
\]

The sentence in (1) (repeated here as (9a)) has the vP structure in (9b) at an earlier stage of the derivation. The v head has a provocative unvalued Root feature. It matches the Root feature of V. Here, it is impossible that the copy of VP is created and VP occupies [Spec,vP] by External Merge. This is because the complement of a head cannot be the specifier of the same head. Thus, the copy of V, not VP, is created and it adjoins to v as in (9c). In this way, head-movement is triggered under circumstances
where XP-movement is prohibited.

In chapter 3, Branigan presents another case in which head-movement is driven. Consider (10).

\begin{enumerate}
\item \([\text{XP UP} \left[X \text{ u-F}^+ \right] \left[\text{YP ZP}[F] \ Y[F] \ldots \right]] \ Y[F]\]
\item \([\text{XP UP} \left[X[F] \left[\text{YP ZP}[F] \ t_i \ldots \right] \right] \left[\text{YP ZP}[F] \ t_i \ldots \right]]\)
\end{enumerate}

The u-F in X searches its c-command domain for the closest goal and either ZP or Y can be a goal since they are equidistant from X. Branigan assumes that XP-movement is preferred to head-movement. Then, ZP should be the goal. However, UP has already been in \([\text{Spec,XP}]\), which blocks movement of ZP. Thus, Y is selected as a goal. Since the u-F is provocative, it provokes Y as shown in (10a) and then the copy of Y adjoins to X as in (10b).

With this in mind, let us discuss negative inversion, which is illustrated in (11).

\begin{enumerate}
\item I assure you that no tastier moose stew have I ever sampled.
\end{enumerate}

Branigan addresses the two questions about the negative inversion construction: (i) why does inversion occur?; and (ii) what structural position does the auxiliary verb occupy? To answer these questions, Branigan adopts Rizzi's (1997) split CP analysis.

\begin{enumerate}
\item \([\text{ForceP} \left[\text{Force} \right] \left[\text{FinP Subj} \left[\text{Fin u-φ}^+ \right] \left[\text{TP t_i [T u-φ] \ldots \ldots]] \right]\right]]\]
\end{enumerate}

In (12), CP is divided into ForceP and FinP. Branigan further assumes that Fin as well as T have provocative unvalued φ-features, which attract the subject. Now, let us consider the derivation of the negative inversion in (11).

\begin{enumerate}
\item \([\text{FinP} \left[\text{Fin \left[MD^+\right]} \left[\text{u-φ}^+ \right] \left[\text{TP \left[DP I\right]} \left[T \text{have}[φ] \right] \left[vP t_i \text{ ever sampled} \left[\text{DP no tastier moose}]\right)]]\right] \left[DP \text{no tastier moose}\right]]\]
\item \([\text{FinP} \left[DP \text{no tastier moose}]l \left[\text{Fin \left[MD\right]} \left[\text{u-φ}^+ \right] \left[\text{TP [DP I]} \left[T \text{have}[φ] \right] \left[vP t_i \text{ ever sampled} \left[t_j]\right)]]\right] \left[T \text{have}[φ] \right]]\]
\item \([\text{FinP} \left[DP \text{no tastier moose}]l \left[\text{Fin \left[T have[φ]]k \left[MD\right]} \left[φ] \right] \left[\text{TP [DP I]} \left[t_k \left[vP t_i \text{ ever sampled} \left[t_j]\right)]]\right] \left[T \text{have}[φ] \right]]\]
\end{enumerate}

Suppose that the derivation has reached the stage in (13a), where Fin is merged with TP. Fin carries not only the inherent unvalued φ-features, but also the monotone decreasing (MD) P-feature, which attracts a negative element. The MD P-feature searches its c-command domain for a
negative expression and establishes a checking relation with the DP *no tastier moose*. The P-feature provokes the DP, so that we have two P-markers. These P-markers are unified by the Merge operation as shown in (13b). Fin also bears unvalued ϕ-features. Branigan assumes with Pesetsky and Torrego (2001) that the valued ϕ-features in T are visible for computation. Then, there are two potential goals: the subject *I* and the auxiliary verb *have*. Given that XP-movement is given priority over head-movement, the probe should select the subject as the goal. However, the specifier of FinP is occupied by DP. Therefore, the auxiliary verb, not the subject is selected as the goal. A copy of the auxiliary verb is created as indicated in (13b), and then it is adjoined to Fin as indicated in (13c). Thus, the negative inversion in (11) is derived.

In chapter 4, Branigan explores the possibility that a single probe triggers both XP-movement and head-movement. First, he takes up the case where a single probe drives movement of multiple phrasal elements.

(14) \[[XP \ [X \ u-F^*] \ [KP \ldots YP_F \ldots ZP_F]]\]

In (14), the probe u-F motivates movement of YP and ZP to [Spec,XP]. As we have seen so far, head-movement is a syntactic operation. Then, it is logically possible for a probe to attract a head and a phrasal category. Consider (15).

(15) a. \[[XP \ X[u-F^*] \ [HP \ [H \ [F]] \ [ZP \ldots YP[F] \ldots]]]\]
 b. \[[XP \ [YP \ [F]]_j \ [X[F] \ [H \ [F]]_i] \ [HP \ t_i \ [ZP \ldots t_j \ldots]]]\]

The unvalued P-feature F triggers movement of H and YP as shown in (15b). Head-movement of H must precede phrasal movement of YP since H is closer to X than YP. Branigan argues that this is the derivation of embedded questions in Germanic languages. The derivation of the Swedish embedded question in (16a) is shown in (16b, c).

(16) a. *Jag vet inte vad Lars sa.*
 I know not what Lars said
 ‘I don’t know what Lars said’
 (p. 64)

4 According to Pesetsky and Torrego (2001), it is not until the phase is completed that an uninterpretable feature is erased.

5 One might wonder why the MD feature valuation takes place before the unvalued ϕ-feature valuation. Branigan suggests that the feature added to a head must be checked before the inherent feature in the head is checked, in conformity with Bobaljik and Branigan (2006). Then, since the MD feature is the feature added to Fin in the course of the derivation, the MD feature valuation precedes the inherent ϕ-feature valuation.

6 Branigan notes that the case in point is multiple *wh*-movement in Slavic.
REVIEWS

b. \([\text{ForceP} \ [\text{Force} [\text{u-Force}^+]] \ [\text{FinP} \ Lars \ [\text{Fin} (\text{Comp})[\text{Force}][\text{TP}] \ sa \ vad \ [\text{Force}]]]]\)

c. \([\text{ForceP} \ vad, \ [\text{Force} [\text{Fin} (\text{Comp})], \ [\text{u-Force}^+]] \ [\text{FinP} \ Lars \ t_i \ [\text{TP}] \ sa \ t_j]]\)

Branigan supposes that Force has a provocative unvalued Force feature, and Fin and the \(wh\)-phrase \(vad\) ‘what’ have a valued Force feature. The Force feature in Fin can be realized as a complementizer. The language allows the u-Force feature to relate to and value multiple goals. Therefore, it enters into a checking relation with Fin and the \(wh\)-phrase, triggering head-movement of Fin and phrasal movement of the \(wh\)-phrase as shown in (16c). Under the proposed analysis, Branigan gives an account for the distribution of complementizers in embedded questions in Germanic languages. First, consider the embedded clause in (17).

(17) Her er mannen hvis hest (*som) vant løpet.

here is the-man whose horse won the-race

‘Here is the man whose horse won the race’ (p. 78)

Generally, Norwegian shows effects of the Doubly Filled Comp Filter (DFCF), which prohibits both the specifier of CP and the C head from being overtly realized. In (17), the \(wh\)-phrase cannot occupy the specifier position of the overt complementizer due to the DFCF violation. However, there is a subject-object asymmetry with respect to the DFCF in embedded questions.

(18) a. Vi vet hvem *(som) snakker med Marit.

we know who talks with Mary

‘We know who talks with Mary’ (p. 78)

b. *Ve vet hvem som Marit snakker med.

we know who Marit talks with

‘We know who Mary talks with’ (p. 79)

While the subject \(wh\)-phrase co-occurs with the overt complementizer as illustrated in (18a), the non-subject \(wh\)-phrase cannot co-occur with it as in (18b). The structures of the embedded clauses in (18a, b) are (19a, b), respectively.

(19) a. \([\text{ForceP} \ hvem, \ [\text{Force} [\text{u-Force}^+]] \ [\text{FinP} \ t_i \ [\text{Fin som}[\text{Force}][\text{TP}] \ snakker med Marit]]\]

b. \([\text{ForceP} \ hvem, \ [\text{Force} [\text{Fin som}[\text{Force}]], \ [\text{u-Force}^+]] \ [\text{FinP} \ t_i \ [\text{TP} \ Marit snakker med t_j]]\]

In (19a), the \(wh\)-phrase and Fin are the potential matching goals of the u-Force since they are equidistant from Force. Given that phrasal movement is preferred to head-movement, the \(wh\)-phrase is selected as the goal, un-
dergoing movement from [Spec, FinP] to [Spec, ForceP]. Then, there is no phonological element in the specifier position of FinP headed by the overt complementizer. Therefore, the DFCF violation does not occur. Rather, the complementizer is obligatory since no overt element occupies [Spec, FinP] and there is no requirement of complementizer deletion. In (19b), Fin is closer to Force than the \textit{wh}-phrase. Thus, the u-Force first establishes a checking relation with Fin, provoking it. After that, it further provokes the \textit{wh}-phrase.\footnote{Branigan states that “the force-marking information is supplied not primarily by the complementizer, but by the fronted \textit{wh}-phrase in [Spec, Force]” (p. 76). Therefore, the u-Force further searches its c-command domain for the \textit{wh}-element.} Here, the \textit{wh}-phrase occupies [Spec, ForceP] and the complementizer the Force head. This is a violation of the DFCF, resulting in the ungrammaticality of (18b).

In chapter 5, Branigan argues that a copy of the goal is a syntactic object distinct from the goal.

\begin{equation}
(20) \ [XP \ YP^0 \ X \ [ZP \ Z \ YP^1]]
\end{equation}

In (20), where YP moves to [Spec, XP], YP0 and YP1 are independent syntactic objects. This point of view is different from that of Chomsky (2004). Chomsky takes two copies as one and the same. In (20), a single syntactic object YP occupies two positions: the specifier position of XP and the complement position of Z.

In pursuing the idea that the two copies are different, Branigan realizes that we have a problem: how to account for successive cyclic A’-movement.

\begin{equation}
(21) \quad \begin{array}{ll}
\text{a.} & \text{Whom should I say that Pam has invited?} \\
\text{b.} & \text{Whom}^0 \text{ should I say whom}^1 \text{ that Pam has invited whom}^2? \\
\end{array}
\end{equation}

In (21a) the \textit{wh}-phrase undergoes successive cyclic A’-movement, as shown in (21b). Here, \textit{whom}^0 and \textit{whom}^1 are copies of \textit{whom}^2 and are independent \textit{wh}-operators. Then, (21a) has the A’-chain in (22).

\begin{equation}
(22) \quad ([\text{wh } x]^0, [\text{wh } x]^1, [x: \text{person}(x)]^2)
\end{equation}

In this chain, the multiple \textit{wh}-operators are associated with a single variable, which leads to a crash at the LF interface. Therefore, we cannot account for the grammaticality of (21a). Branigan deals with this problem by proposing the interface interpretation principle in (23).

\begin{equation}
(23) \quad \text{\textit{Clause Edge Interpretation Convention (CEIC)}}
\end{equation}

In the left periphery of a clause, only categories external to a force marker can be ignored.

(23) states that the specifier element of a force marker can be eliminated
from the LF representation. Now let us reconsider the successive cyclic A′-movement.

(24) a. Whom\(0\) should I whom\(4\) that Pam has invited whom\(2\)
 b. (\([\text{wh } x]0, [x: \text{person}(x)]2\))

In (24a), the intermediate trace is deleted according to the CEIC since it is in the specifier position of the force marker that. Then, the A′-chain structure is shown in (24b), where there is a one-to-one relation between the operator and the variable. This structure is legitimate at LF. Therefore, (21a) is grammatical. Branigan shows that the present model can give a principled account for that-trace effects.

(25) a. *Which horse do you think that will win the race?
 b. Which horse do you think will win the race?

As the contrast between (25a) and (25b) illustrates, the subject cannot be extracted across the overt complementizer. The sentences in (25a, b) have the structures in (26a, b), respectively.

(26) a. [which horse\(0\) do you think \([\text{ForceP } \text{which horse}4 \text{that } \text{FinP which horse}2 \text{Fin } \text{TP which horse}3 \text{will win the race}]]]
 b. [which horse\(0\) do you think \([\text{FinP } \text{which horse}4 \text{Fin } \text{TP which horse}2 \text{will win the race}]]

In (26a), which horse\(1\) is deleted in conformity with the CEIC. Other operators are not allowed to be deleted. Then, there are multiple operators associated with the single variable: the one in the matrix clause and the other in the embedded [Spec,FinP]. This causes a crash at LF, resulting in the ungrammaticality of (25a). The sentence in (26b) lacks the complementizer that. Therefore, there is no ForceP projection and the clausal complement is FinP, whose head functions as a force marker. Then, the CEIC allows the operator in the embedded [Spec,FinP] to be deleted since Fin is a force marker, so that the single operator binds the single variable in (26b). Therefore, (25b) is grammatical.

3. Discussion and Concluding Remarks

It has been shown that the provocation model is justified on the basis of inversion phenomena and that-trace effects, among others. Now, let us make some comments with respect to the model.

Although the provocation model sounds successful and attractive, Branigan does not seem to offer strong evidence in favor of his model. More specifically, although he may succeed in showing the plausibility of the model on the basis of a broader range of data such as negative in-
version and that-trace effects, he does not provide a comparison with other existing approaches to them. It would seem to be necessary that he show the superiority of his model over other approaches through comparison with them.

Furthermore, the provocation model seems to have problems, both conceptually and empirically. First, let us note a conceptual problem. The model appeals to the concept of a chain. However, in the framework of the Minimalist Program, whether a chain exists as a grammatical object may be controversial. It is not explicitly argued whether or not Branigan’s concept of chains violates the Inclusiveness Condition according to which “no new objects are added in the course of computation apart from rearrangements of lexical properties” (Chomsky (1995: 228)). This condition bars the existence of indices, traces, and bar levels. Branigan’s concept of chains seems to pose a problem for the Inclusiveness Condition, because the head of a chain is assumed to be a copy created as an element distinct from the original element (the tail of a chain) composed of lexical items in the initial Numeration. Therefore, although he accounts for that-trace effects on the basis of chains, it would be preferable that they be captured without appealing to chains. There are other minimalist approaches to that-trace effects. Ishii (2004) argues that that-trace effects are derived from the Phase Impenetrability Condition combined with the vacuous movement hypothesis. On the other hand, Merchant (2001) argues that they are PF island violations, presenting data which shows that they are repaired by sluicing.

(27) It’s probable that a certain senator will resign, but which [it’s probable that \(t \) will resign] is still a secret.

(Merchant (2001: 185))

Whichever approach we adopt, we can provide an account for that-trace effects without the notion of chains.

Next, an empirical problem is related to successive cyclic A’-movement. According to Branigan, the embedded CP is moved by extraposition and adjoined to vP before wh-movement occurs. Therefore, wh-phrases move from the embedded [Spec,CP] to the matrix [Spec,CP] without moving to the edge of the vP phase. For example, the sentence in (21a) repeated here

8 Hornstein (1999: 86) claims that the condition prohibits the existence of chains.
9 As we have seen in footnote 5, the MD feature is added to the Fin head in the course of the derivation. This is also the violation of the Inclusiveness Condition. I thank an anonymous reviewer for pointing out this issue.
as (28a) has the structure in (28b).

(28)
 a. Whom should I say that Pam has invited?
 b. \[CP \text{whom}_j \text{ should I } [v_P [v_P \text{ say } t_i] [CP t_j \text{ that Pam has invited } t_j]]]\]

In (28b), the embedded CP is extraposed to vP. After that, movement of the \textit{wh}-phrase takes place. Here, there is no need for the \textit{wh}-phase to move to the edge of the matrix vP phase since the embedded CP is in the vP edge. Therefore, the \textit{wh}-phrase moves from the embedded [Spec,CP] to the matrix [Spec,CP]. However, there seem to be some problems with the derivation in (28b). First, the extraction from the embedded CP violates the Adjunct Condition since the embedded CP is in the adjunct position. Furthermore, the \textit{wh}-phrase should move to the vP edge in the embedded clause, which Branigan does not mention. So the structure should be (29).

(29) \[CP \text{whom}_j \text{ should I } [v_P [v_P \text{ say } t_i] [CP t_j \text{ that Pam has } [v_P t_j [v_P \text{ invited } t_j]]]]]\]

While the intermediate trace in [Spec,CP] is ignored by the CEIC, the intermediate trace in [Spec,vP] cannot be ignored. Then, there are two operators associated with one variable, which causes a crash at LF. Therefore, it seems that the problem of successive cyclic A'-movement remains unsolved even if the CEIC is assumed to hold at the LF interface.

In spite of the problems we have mentioned above, this book makes a significant contribution to the theory of generative grammar in the sense that it has made the mechanism of movement more sophisticated than ever before. Furthermore, Branigan’s movement model is valuable in that it gains empirical support from cross-linguistic data. I strongly recommend this book to anyone who is interested in the theory and mechanism of what motivates movement in language.

REFERENCES

Bobaljik, Jonathan David and Phil Branigan (2006) “Eccentric Agreement and Mul-

10 For the sake of convenience, traces are co-indexed with their antecedents in (28b). As Branigan argues in chapter 5, the goal and its copy are independent syntactic objects.

11 I thank Nobuhiro Miyoshi for pointing out this problem.

[received July 18 2012, revised and accepted December 2 2012]

Common Courses of Human Sciences
Kitami Institute of Technology
165 Koen-cho, Kitami-shi
Hokkaido 090–8507
e-mail: tozawata@mail.kitami-it.ac.jp