AGAINST FEATURE “COPYING”

CHIHIRO FUJIMORI

Hirosaki University

In this paper, I will argue against the feature “copying” mechanism proposed by Ohtaka (2013). She argues that the embedded subject in the RTO (Raising-to-Object) construction in Japanese moves to the embedded SpecTP to obtain a subject “status.” However, following Saito (2009, 2011), I will argue that the subject can obtain a subject “status” at SpecvP. Furthermore, following Goto (2010), I will argue that, when feature inheritance does not take place, the [EPP] feature on T become inactive. Thus, there is no reason to move to the embedded SpecTP, so we need no feature “copying” mechanism. Instead, I will account for the RTO construction by the “goal”-driven movement proposed by Bošković (2007, 2011), and argue that the embedded subject moves to the matrix SpecVP via the embedded SpecCP, skipping the embedded SpecTP.*

Keywords: feature “copying,” a subject “status,” the inactive [EPP] feature, “incomplete” φ-features, goal-driven movement

1. Feature “Copying”: Ohtaka (2013)

1.1. Feature “Copying” and Raising-To-Object Construction

Ohtaka (2013: 166) argues that, extending Chomsky’s (2008) idea of the feature inheritance mechanism, there are three occurrences of “feature inheritance”: first, as Chomsky (2008) assumes, the φ-features (or Agree features) on the phase heads are inherited by their complement heads (1a); second, the φ-features remain on the phase heads (1b); and finally, the φ-features are “copied” onto their complement heads (1c).

* I would like to thank Jun Abe, Nobu Goto, Norimi Kimura and two anonymous English Linguistics reviewers for helpful comments and suggestions. I also thank Edward Forsythe and Annie Apple-Mathews for the stylistic improvement. All remaining errors and inadequacies are my own.
This “copying” mechanism in (1c) can, she argues, account for the derivations of the RTO (Raising-to-Object) construction in Japanese, as the following contrast shows.

(2) a. Bill-wa Mary-o [t₁ baka-da to] omot-teiru
 Bill-Top Mary-Acc fool-Cop Comp think-Prog
 ‘Bill thinks of Mary as a fool’

 b. Bill-wa [Mary-ga baka-da to] omot-teiru
 Bill-Top Mary-Nom fool-Cop Comp think-Prog
 ‘Bill thinks that Mary is a fool’

In (2a), the embedded subject Mary-o ‘Mary-Acc’ is marked as Acc, which means that it cannot be Case-licensed in the embedded SpecTP; rather, it must be Case-licensed in the matrix clause. Therefore, the embedded subject moves into the matrix clause.1 On the other hand, in (2b) the embedded subject Mary-ga ‘Mary-Nom’ is marked as Nom, which means that it must be Case-licensed in the embedded SpecTP. In fact, Takeuchi (2010: 110) exemplifies this difference in terms of whether Condition B is applied or not.

 John-Nom he-Nom fool-Cop Comp think-Prog
 ‘John thinks he is a fool’

 John-Nom he-Acc fool-Cop Comp think-Prog
 Lit. ‘John thinks of him as a fool’

Takeuchi argues that, in (3a), the embedded subject kare-ga ‘he-Nom’ is

1 The issue of the position in which the embedded subject is Case-licensed will be discussed in section 3.2.

2 An anonymous EL reviewer pointed out to me that (3a) is unacceptable, and that it becomes acceptable if the embedded subject is replaced by zibun ‘self.’ While I can see what he/she means, I’d like to argue that the more important thing here is the contrast of acceptability between (3a) and (3b): that is, (3a) seems more acceptable to me, though it is marginal, as Takeuchi (2010) judges it as ‘?,’ than (3b), which is hopeless. As long as such a contrast is tenable, we can follow Takeuchi’s claim here.

3 Takeuchi (2010) explicitly argues that the embedded subject moves out of the embedded CP phase, i.e. to SpecCP, but he does not discuss exactly where the subject has its Case licensed. That is, it is unclear whether the subject moves to SpecVP or stays in the embedded SpecCP. For this problem, see section 3.2.
marked as Nom and that it does not violate Condition B, which indicates that it is not a clause mate with its antecedent John-ga ‘John-Nom,’ and which in turn means that it does not move into the matrix clause, remaining in the embedded clause. On the other hand, in (3b), the embedded subject kare-o ‘he-Acc’ is marked as Acc and it does violate Condition B, which indicates that it is a clause mate with its antecedent John-ga ‘John-Nom,’ and which in turn means that it does move into the matrix clause.

1.2. SpecTP-to-SpecCP Movement

Ohtaka (2013) first considers whether the embedded subject Mary-o ‘Mary-Acc’ in (2a) moves via SpecCP or not. There are two analyses: Takano (2010) and Takahashi (2012) argue that the subject moves from the embedded SpecTP directly to the matrix SpecVP, which means that the subject does not move through the embedded SpecCP.

(4) Bill-wa Mary-o i [CP [TP t_i baka-da] to] omot-teiru
 Bill-Top Mary-Acc fool-Cop Comp think-Prog

On the other hand, Tanaka (2002) and Takeuchi (2010) argue that the embedded subject moves from the embedded SpecTP to the matrix SpecVP via the embedded SpecCP. In particular, Takeuchi (2010) argues that the φ features on C are optionally inherited by T: if the φ-features remain on C, the C, not T, becomes a Probe for Agree, so the embedded subject moves to SpecCP to license the φ-features.

(5) Bill-wa Mary-o [CP t_i [TP t_i baka-da] to_[φ]] omot-teiru

Here, Ohtaka (2013) assumes, following Chomsky (2008), that CP always constitutes a phase. Thus she follows Tanaka/Takeuchi’s proposals, positing the derivation given in (5). Notice here that the raising of the embedded subject into the matrix clause is assumed to be an A-movement, since this movement enables the embedded subject to have its Case licensed. This means that the embedded subject can A-move even via SpecCP, which has been assumed as an A’-position. If so, this movement would lead to improper movement (A-A’-A). However, neither Ohtaka (2013), Tanaka (2002) or Takeuchi (2010) account for why the movement in (5) does not induce improper movement. I will discuss this point in a later section (pp. 124–125).

4 Here, I will assume that the “sentential domain” for binding is defined by the CP phase. Therefore, in the light of the Phase Impenetrability Condition (PIC), an element in the embedded SpecCP can be regarded as a member of the matrix CP phase.
1.3. SpecvP-to-SpecTP Movement

Ohtaka (2013) next considers what makes the movement from SpecvP to SpecTP possible. If Takeuchi’s (2010) proposals are correct, the ϕ-features remain on C, so T does not have any ϕ-features to Agree with the embedded subject; thus there is no reason for the embedded subject to move to the embedded SpecTP.\(^5\)\(^6\)

(6) Bill-wa Mary-o [CP t_i [TP [vP t_i baka-da] T] to[ϕ]] omot-teiru

Ohtaka argues, however, that if the subject does not move to SpecTP, it cannot obtain a subject “status” as to a predication relation (cf. Chomsky (1995, 2012)). Therefore, the embedded subject must move through SpecTP to obtain a subject “status.”

Now, we are in a dilemma: the embedded subject needs to move through the embedded SpecTP to obtain a subject “status,” but there is no (morphological) reason to move there. How should this dilemma be reconciled? Here Ohtaka (2013) assumes that the ϕ-features on the phase heads can “copy” onto their complement heads, as shown in (1c), which is repeated below, and proposes the analysis of RTO construction as in (8).

(7) [C$_{[\phi]}$] [T$_{[\phi]}$] … / [V$_{[\phi]}$] [V$_{[\phi]}$] … [feature “copying”]

(8) Bill-wa Mary-o [CP t_i [TP t_i [vP t_i baka-da] T$_{[\phi]}$] to$_{[\phi]}$] omot-teiru

In (8), the ϕ-features on C are “copied” onto its complement head T. Then, she argues that the embedded subject moves from SpecvP to SpecTP to check the “copied” ϕ-features, and it further moves to SpecCP to check

\(^5\) As for the movement driven by the [EPP] feature, see section 2.2.

\(^6\) One may wonder what motivates the movement of the embedded subject to the embedded SpecCP. If one posits the [EPP] feature on C, the movement can be seen as an [EPP]-driven movement. However, under Bošković’s (2007, 2011) system, no [EPP] feature is assumed, so we cannot see the movement as [EPP]-driven. As for this, I’d like to assume, following Bošković, that this movement takes place in order to avoid the PIC effects. Under the mechanism of the goal-driven movement, to which I will refer in 3.1, if uninterpretable/unvalued features on an element Y are not licensed in the current phase XP, Y has to move into the higher phase to have its features licensed. However, since XP is a phase, in order to avoid the PIC effects Y cannot move into the higher phase without stopping by SpecXP. Furthermore, given Fujimori’s (2013) assumption that “if ϕ-features on C are not inherited by T and remain on C, they are “incomplete” ones ((22) in this paper),” no Case feature licensing occurs at the embedded SpecCP since the ϕ-features remaining on the C are “incomplete” or “defective.” Therefore, the embedded subject can be still active/visible even though it stops by the embedded SpecCP. Thus, I assume here that the embedded subject moves to the embedded SpecCP for the PIC reason.
the “original” φ-features.

However, Ohtaka (2013) offers a crucial proviso: when the φ-features are “copied,” both the “copied” and the “original” φ-features should be “weakened” since neither T nor C is involved in the Case licensing. As Chomsky (2008) argues, if feature inheritance occurs, the element in agreement should bear Case accordingly; i.e., if T Agrees with a DP in SpecvP, the DP should bear Nom,7 or if V Agrees with a DP in the complement of V, the DP should bear Acc. However, in (8), the embedded subject never bears Nom even though it does “check” the “copied” φ-features in SpecTP. To avoid this, Ohtaka assumes that the “copied” φ-features are “weakened” and the Case of the embedded subject is not licensed at that position. Therefore, after moving to SpecCP to check the “original” φ-features on C, the embedded subject further moves into the matrix clause where its Case is licensed as Acc. Notice that the fact that the embedded subject is Case-licensed in the matrix clause means that, in terms of the mechanism of Agree, its φ-features are still active/visible from the matrix V even though the φ-features on the embedded subject value those on T and C.

2. Subject “Status” and Movement into SpecTP

As reviewed above, Ohtaka’s (2013) proposals appear to account for the derivations of the RTO construction in Japanese. However, some fundamental questions may occur: what is “feature copying” and what is “feature weakening?” The reason why she proposes feature “copying” is, as mentioned above, because a subject cannot obtain a subject “status” unless it moves to SpecTP, which means that SpecTP must be a canonical subject position. Furthermore, feature “weakening” can account for the fact that the embedded subject in the RTO construction is not Case-licensed at the embedded SpecTP though it checks the “copied” φ-features on T. Now, I’d like to ask the following question: what if the embedded subject need not move to SpecTP at all? That is, if we can account for a subject “status” without committing to (the movement to) SpecTP, there would be no reason to move there, so there would be no reason to propose feature “copying,” much less feature “weakening.” Therefore, in this section, I’d like to investigate whether this enterprise is feasible. If we reach the desired goal,

7 Chomsky (2008) argues that the driving force for the element in SpecvP to move to SpecTP is the [EPP] feature on T.
we can do without feature “copying” or feature “weakening.”

Saito (2006, 2011) argues that, in Japanese causatives, which take a vP complement, both a causer and a causee can be qualified as the antecedent for zibun ‘self,’ which indicates the subject-oriented property.

(9) a. Hanako-ga Taroo-o zibun-no ie-de sikat-ta
 Hanako-Nom Taro-Acc self-Gen house-at scold-past
 ‘Hanako scolded Taro at her/*his house’ (Saito (2006: 50))

b. Hanako-ga Taroo-ni zibun-no hon-o sute-sase-ta
 Hanako-Nom Taroo-Dat self-Gen book-Acc discard-make-past
 ‘Hanako made Taro discard her/his book’ (Saito (2006: 51))

c. [sP Hanako [vP [sP Taroo [vP zibun V] v] V] v]

Saito argues that if an element in SpecvP, not in SpecTP, can count as ‘subject,’ the reason why Taroo-ni ‘Taro-Dat’ in (9b) can be qualified as the antecedent for zibun ‘self’ can be accounted for.

Once we assume that a subject “status” can be obtained in SpecvP, there seems to be no reason to move the embedded subject of the RTO construction to the embedded SpecTP as Ohtaka (2013) argues. This means, in turn, that we do not need to postulate the mechanism of feature “copying” onto T since, as pointed out above, the only reason for Ohtaka to assume feature “copying” is to ensure the movement to SpecTP to obtain a subject “status.” Therefore, we can conclude that in the RTO construction in Japanese, the φ-features on the embedded C remain there, not being “copied” onto T.

One may suspect that the movement to SpecTP should occur by means of the [EPP] feature on T. However, some researchers argue that this is not necessarily the case. For example, Goto (2010: 118) argues that, given the phase-based Transfer system, it is expected that the edge of C in the matrix clause remains as a residue of Transfer in the narrow syntax and the position will not be transferred throughout the derivation.

(10) [CP what did(C) [TP you [sP v [vP think] [CP C] [TP John [vP v] v
 Transfer 4 Transfer 3 Transfer 2
 buy <what>]]]]]]

Transfer 1

To solve this problem, Goto (2010) assumes that the matrix CP is trans-
ferred along with its domain.

(11) \[\text{Transfer 4}\]
\[
[\text{CP what did(C)} [\text{TP you} [\text{vP think [CP C [TP John [vP v [VP buy <what>]]]]]]]]
\]

How then should such a mechanism be allowed? Here, Goto (2010: 120) proposes asymmetrical feature inheritance as follows.

(12) C-to-T feature inheritance is unnecessary in the matrix clause [whereas it is necessary in the embedded clause].

Furthermore, Goto (2010) assumes that, though T inherently bears the [EPP] feature, it is activated only when feature inheritance takes place. Thus, he argues that, in (13a), the φ-features on the matrix C remain there due to the asymmetrical feature inheritance in (12), and that the [EPP] feature on T is inactive because no feature inheritance takes place, as shown in (13b). As a result, the subject John need not move to SpecTP, remaining in SpecvP, where the φ-features on C enter into an Agree relation with John in the SpecvP to value the uninterpretable φ-features.

(13) a. Who will John visit?

b. \[\text{[CP who C[EPP]-will [TP <will> [vP John [vP visit <who>]]]]}]^{10}

(Goto (2010: 122))

If Goto’s (2010) argument is correct, we can assume that the subject does not (or cannot) move to SpecTP when the φ-features on C are not inherited by T, because in such a situation the [EPP] feature on T is inactive. Therefore, in the RTO construction in Japanese, if we assume that the φ-features on the embedded C remain there, there is no reason for the embedded subject to move to the embedded SpecTP; the T has no φ-features, nor an active [EPP] feature. Thus, we can conclude that the embedded subject moves from the embedded SpecvP directly to the embedded SpecCP. This means, as a consequence, that we need no feature “copying” mechanism, since there is no reason to move to the embedded SpecTP in the RTO construction. Thus, the derivation shown in (8) should be reanalyzed as the

8 The latter part of the proposal is not relevant to the current discussion, so I ignore this.

10 In (13) the \textit{wh}-phrase \textit{who} moves to SpecCP. Goto (2010) argues that when there is no \textit{wh}-phrase to move to SpecCP, the subject in SpecvP moves to SpecCP.
AGAINST FEATURE “COPYING”

following.

(14) \([_{\text{CP}} \text{Mary-o}_t [_{\text{TP}} [_{\text{VP}} t_i \text{baka-da}] T] \text{to}_{[\phi]}] \)

3. Consequences

3.1. RTO Construction and Resultative Construction: Fujimori (2013)

If the argument above is correct, we can relate it to Fujimori’s (2013) argument on the resultative construction in English. Fujimori argues that the resultative construction involves a small clause (SC) as the complement of the matrix V, and that resultative SCs have C which has the \(\phi \)-features.

(15)

- a. They hammered the metal flat
- b. ... \([_{\text{CP}} [_{\text{SC}} [_{\text{TP}} [_{\text{VP}} \text{the metal}] \text{Pred}_{[\phi]} \text{AP flat}]]] \)
- c. The joggers ran the pavement thin
- d. ... \([_{\text{CP}} [_{\text{SC}} [_{\text{TP}} [_{\text{VP}} \text{the pavement}] \text{Pred}_{[\phi]} \text{AP thin}]]] \)

Like Takeuchi (2010), Fujimori also argues that the \(\phi \)-features on the embedded C are not inherited by the embedded T\textsc{sc}, remaining there. To value the \(\phi \)-features on the embedded C, the SC subject moves from SpecPredP directly to SpecCP, passing over the embedded SpecTP. After this movement, the SC subject further moves to the matrix SpecVP to have its uninterpretable/unvalued Case feature licensed. This is illustrated in (16).

(16) a. They hammered ... \([_{\text{VP}} [_{\text{TP}} [_{\text{VP}} \text{the metal}] \text{Pred}_{[\phi]} \text{AP flat}] [_{\text{TP}} t_i [_{\text{TP}} t_i [_{\text{TP}} [_{\text{TP}} \text{C}_{[\phi]} [_{\text{TP}} \text{T}_{\text{SC}} [_{\text{TP}} \text{Pred}_{[\phi]} \text{AP thin}]]]]]] \])

b. The joggers ran ... \([_{\text{VP}} [_{\text{TP}} [_{\text{VP}} \text{the pavement}] \text{Pred}_{[\phi]} \text{AP thin}] [_{\text{TP}} t_i [_{\text{TP}} t_i [_{\text{TP}} [_{\text{TP}} \text{C}_{[\phi]} [_{\text{TP}} \text{T}_{\text{SC}} [_{\text{TP}} \text{Pred}_{[\phi]} \text{AP thin}]]]]]] \])

(Fujimori (2013: 45))

One may wonder why the SC subject moves to the embedded SpecCP: as an anonymous EL reviewer pointed out, “under the operation Agree, relevant features on matching elements are checked/valued/deleted without

11 Here, I will only show the aspects of Fujimori’s (2013) analysis which are relevant to the current discussion. For a detailed analysis, see Fujimori (2013).

12 Fujimori (2013) assumes that even in the embedded CP \(\phi \)-feature checking does take place, resulting in the \(\phi \)-features on the C valued and deleted. However, an anonymous EL reviewer pointed out that such an operation seems to have the nature of Enlightened Self-Interest (Lasnik (1995)), not the goal-driven movement (Bošković (2007, 2011)), which I will assume in this paper. Therefore, adopting the reviewer’s suggestion, I have to admit that Fujimori’s (2013) analysis is misguided or wrong, and there should be no feature checking/valuation in the embedded CP. Instead, I’d like to argue that the embedded SC subject moves to the embedded SpecCP for PIC reason, as I mentioned in Note 6, not for the purpose of checking/valuation.
recourse to any movement, and that movement of the Goal to the Probe’s Spec is caused by the [EPP] feature (or an edge feature) of the Probe [the reviewer’s comment quoted].” As for this, Fujimori (2013) assumes the goal-driven movement proposed by Bošković (2007, 2011), which I also assume in this paper. Now let me introduce the mechanism of the goal-driven movement.

Bošković (2007: Section 4) argues that the uninterpretable features on the moving element, or the ‘goal,’ not on the target, motivate the movement of a phrase in which it is contained.

(17) \[XP \ldots X \ldots Y \] (XP=phase)
\[iF \]
\[uK \]

In (17), \(uK \) of \(Y \), which cannot be checked within XP, motivates the movement of \(Y \) to SpecXP. Bošković (2007: 620) reformulates the Last Resort as in (18) and argues that, if this movement did not occur, \(uK \) of \(Y \) would not be checked, and the derivation would crash.

(18) Bošković’s (2007) Last Resort
\[X \] undergoes movement iff without movement the structure will crash.

Notice here that XP in (17) is a phase: Chomsky (2000, 2001) argues that the Probe cannot search inside the lower phase complement, and if an element in the lower phase complement needs to move into the higher phase, it has to first move to the peripheral position (i.e. the Spec position) of the phase head, which is well known as the Phase Impenetrability Condition (PIC). Because \(uK \) of \(Y \) is not licensed in XP, \(Y \) must move into the higher phase to have its \(uK \) licensed, but to avoid the PIC effects \(Y \) must first move to SpecXP.

Furthermore, as a probe, \(Y \) in (17) will have to move to a position c-commanding the \(uK \) licensor to check the feature, so it will have to move to the closest position c-commanding the licensor; that is, the Spec position of the licensor.

(19) \[wp Y W [xp tY \ldots X \ldots tY] \]
\[iF \]
\[uF \]
\[uK K \]

Extending these arguments, Bošković (2011: Section 3) further argues that Case checking can be accounted for by valuation. He points out that the Case feature is clearly uninterpretable on both the Case assigner and the Case assignee. However, he also argues that, while (finite) T always governs Nom, the Case of NPs depends on the syntactic context in which they
occur, which means that T’s Case is valued while NPs’ Case is unvalued.

(20) a. T NP
 [val/uCase] [unval/uCase]

b. John kissed Mary
 [Nom] [Acc]

c. Mary kissed John
 [Nom] [Acc]

Then he argues that the NP would move to SpecTP and then probe T from this position, by showing the insight against Agree as follows.

(21) Bošković’s (2011: 9) view on Agree
 “… what derives Agree is valuation: only unvalued features can function as a probe.”

Since the NP has an unvalued Case feature, it can function as a probe. Therefore, under his recent analysis, what derives movement is inadequacy of valuation, not that of interpretability.

Returning to Fujimori’s (2013) discussion, notice here that the SC subject moves to the matrix SpecVP via the embedded SpecCP. This means, as pointed out in section 1, that the uninterpretable/unvalued Case features of the SC subject are still active/visible from the matrix V even though the SC subject stops by the embedded SpecCP, the head of which has the φ-features that would have to be checked/valued if feature inheritance took place. On the other hand, if feature inheritance takes place, not only are the inherited φ-features on T valued and deleted, but the uninterpretable/unvalued Case feature is also checked/valued and deleted, and Case-licensed at that position. Considering this asymmetry, Fujimori (2013: 46) proposes the following.

(22) If φ-features on C are not inherited by T and remain on C, they are “incomplete” ones.13

13 Jun Abe (personal communication) and Nobu Goto (personal communication) pointed out to me that it is unclear why the φ-features which are not inherited by the lower head should be regarded as “incomplete.” Unfortunately, I do not have any consistent answer to this, so I tentatively assume (22) and I will leave the problem open for future research.

As for this problem, an anonymous EL reviewer offered a very interesting suggestion to me. He/She pointed out that “one might argue that T does not inherit all the relevant features from C, but has at least some of the relevant features intrinsically. By feature inheritance, T inherits the rest of the relevant features from C, thereby becoming equipped with a complete set of relevant features. In other words, before inheritance occurs, neither C nor T has a complete set of the relevant features by itself. The fea-
The assumption in (22) ensures that the SC subject in the embedded SpecCP can be probed from the matrix V as a matching goal, because the \(\phi \)-features which are not inherited by T are assumed to be “incomplete,” whereas those on the SC subject (or, more generally, those on any DPs) are “complete” (cf. Bošković (2011)). Given that Case-licensing needs “complete \(\phi \)-feature matching,” if feature inheritance takes place, because the inherited \(\phi \)-features are “complete,” they value the uninterpretable/unvalued Case feature of the DP in SpecTP, thus Case-licensing the DP as Nom at that position. On the other hand, if feature inheritance does not take place, the \(\phi \)-features remain on C, which are assumed to be “incomplete” by assumption (22), so they cannot value the Case feature of the DP in SpecCP, thus the DP is still active/visible for Agree (in Bošković’s (2011) sense, Move) from the \(\phi \)-features on the higher head.

Note also that, as mentioned in section 1, this series of movement does not induce improper movement even if the embedded subject moves via the embedded SpecCP to the matrix Case-licensing position. This means that SpecCP is not an A’-position intrinsically. In fact, Bošković (2007, 2011) points out that, if an element needs to move to have its Case licensed, the whole series of the movement should be regarded as an A-movement even if it stops by SpecCP.\(^{14}\) Obviously, in the case of the resultative construc-

\(^{14}\) Bošković (2007, 2011) points this out because, in his system, in order for an element in the lower phase to move into the higher phase to have its Case licensed, it has to move across the phase boundary, and to avoid the PIC effects, it must stop by the Spec position of the lower phase head, the embedded SpecCP in the current case. Bošković further argues that, in the PIC-driven movement, or the successive cyclic movement, no
tion discussed above, the SC subject moves to have its Case licensed, which is a typical A-movement. In such a situation, even if the SC subject moves through the embedded SpecCP, the whole movement should be regarded as a Case-driven movement, or an A-movement, thus the embedded SpecCP should not count as an A’-position.

Given that this argument is on the right track, let us consider the derivations of the RTO construction in Japanese in more detail without any feature “copying” mechanism. Let us assume that in the RTO construction the embedded C has the φ-features, and assume also that the φ-features are not inherited by its complement head, the embedded T. The embedded subject is qualified as “subject” because it is base-generated in the embedded SpecvP. Then, the subject moves directly to the embedded SpecCP to avoid the PIC effects, not moving through the embedded SpecTP. This is indicated in (23).

\[
\text{(23) } [\text{CP Mary-}o_i [\phi] [\text{TP } [vP t_i \text{ baka-da}] T] \text{ to}]
\]

Here, recall the assumption in (22): the φ-features which are not inherited are “incomplete” in that the uninterpretable/unvalued Case feature of the DP in the embedded SpecCP is not checked/valued and deleted at that position, still being active/visible from the higher Probe. Therefore, to have its uninterpretable/unvalued Case feature checked/valued, the embedded subject further moves to the matrix SpecVP, indicated as below.

\[
\text{(24) } [vP Bill-wa [vP Mary-0_i [CP t_i [\text{TP } [vP t_i \text{ baka-da}] T] \text{ to}] \text{ omot}] v]
\]

3.2. RTO into the Matrix SpecVP

One might doubt that the movement of the embedded subject to the matrix SpecVP does take place at all; that is, the operation Agree would suffice to value the φ-features of the embedded subject. The matrix V, to which the φ-features on the matrix v are inherited, could search for its matching goal, the embedded subject in the embedded SpecCP; therefore, the embedded subject would not need to move to SpecVP. (Notice here that the embedded SpecCP is accessible for the matrix V as for the operation Agree, since it is the edge of the lower phase, not inducing the PIC effects.\(^\text{15}\))

 feature checking takes place in the intermediate positions, the embedded SpecCP in the current case. In this respect, recall, as argued in 3.1, that the φ-features remaining on C should count as “incomplete,” and thus no φ-feature checking takes place, resulting in the embedded subject still being active/visible. Thus, we can hold the same line as Bošković’s (2007, 2011) argument.

\(^{15}\) See note 4.
However, we have to be more careful about where the embedded subject moves to: for example, in English, as Lasnik and Saito (1991) argue, the ECM subject moves to the matrix clause, to the extent that it can reasonably c-command the element in the adjunct phrase, as shown in the following binding facts.

(26) a. condition A
 The DA proved two men\[t_i to have been at the scene of the crime\] during each other\[t_i’s trials\]

b. Weak Crossover mitigation
 The DA proved no suspect\[t_i to have been at the scene of the crime\] during his\[t_i trial\]

c. NPI licensing
 The DA proved no one\[t_i to have been at the scene\] during any of the trials (Lasnik and Saito (1991: 328–329))

Assuming that the adjunct phrases in (26) are VP-adjoined, the embedded subjects in the embedded SpecCP can never c-command them, so we should conclude that the embedded subjects further move from the embedded SpecCP to the higher position, for instance, to the matrix SpecVP, from which they can c-command the adjunct phrases. Then, what motivates this movement? If we assume the goal-driven movement proposed by Bošković’s (2007, 2011), the binding facts shown in (26) can be accounted for. To have its uninterpretable/unvalued Case features licensed, the embedded subject in the RTO construction has to move to the matrix SpecVP, where the subject can c-command (or probe) its valuer, the ϕ-features on the matrix V.

(27) a. \[VP two men$_{t_i}$ prove$_{t_i}$ \[CP t_i to have been at the scene of the crime\]\]

b. \[VP no suspect$_{t_i}$ prove$_{t_i}$ \[CP t_i to have been at the scene of the crime\]\]

c. \[VP no one$_{t_i}$ prove$_{t_i}$ \[CP t_i to have been at the scene\]\]

If we assume that the element in SpecVP can c-command the VP-adjoined element, we can account for the binding facts in (26).

(28) a. \[VP \[VP two men$_t$ prove$_t$ \[CP t_i to have been at the scene of the crime\] during each other\[t_i’s trials\]\]

b. \[VP \[VP no suspect$_t$ prove$_t$ \[CP t_i to have been at the scene of the crime\] during his\[t_i trial\]\]

c. \[VP \[VP no one$_t$ prove$_t$ \[CP t_i to have been at the scene\] during any of the trials\]\]

Furthermore, if this argument can be applied to the Japanese counterex-
amples as well, we can confirm the possibility of the embedded subject’s raising to the matrix SpecVP to have its Case licensed. In fact, Sakai (1998) argues for the overt A-movement (i.e. RTO) analysis of this construction in Japanese.

(29) a. *Rie-wa [karera-ga muzitu da to] otagai-no Rie-Top they-Nom innocent be Comp each.other-Gen syoogen-niyotte sinziteiru testimony-by believe

‘Rie believes that they are innocent by each other’s testimonies’

b. Rie-wa karera-o [tī muzitu da to] otagai-no Rie-Top they-Acc innocent be Comp each.other-Gen syoogen-niyott sinziteiru testimony-by believe

In (29b), the embedded subject karera-o ‘they-Acc’ is marked as Acc and it can license otagai ‘each other,’ which indicates that it is raised into the matrix clause to the extent that it can reasonably c-command the VP-adjoined element; that is, the matrix SpecVP. Thus, we can conclude that even in Japanese the embedded subject in the RTO construction is licensed not in the embedded SpecTP, but in the matrix SpecVP, which can be accounted for not by the operation Agree, but by the goal-driven movement proposed by Bošković (2007, 2011).

4. Conclusion

In this paper, I argued against feature “copying” proposed by Ohtaka (2013). First, following Saito (2006, 2011), I argued that the subject can obtain a subject “status” at SpecvP. Second, following Goto (2010), if the φ-features on C are not inherited by T, the [EPP] feature on T becomes inactive. So, there is no need for the subject to move to the embedded SpecTP in RTO construction, therefore moving from the embedded SpecvP directly to the embedded SpecCP. Now that there is no reason to move to the embedded SpecTP, we can conclude that we do not need feature “copying” mechanism, much less feature “weakening.” Rather, if the φ-features which remain on the phase head (C) are assumed to be “incomplete” in

16 I am indebted to Jun Abe (personal communication) for the suggestion about the reference of Sakai’s (1998) examples.
that the uninterpretable/unvalued Case feature of an element in the Spec position of the phase head is not licensed at that position, we can account for the derivations of the RTO construction in accordance with Fujimori’s (2013) argument on the resultative construction in English: the embedded subject moves to the embedded SpecCP to avoid the PIC effects, not to check/value the φ-features on the embedded C: since the uninterpretable/unvalued Case feature of the embedded subject cannot be licensed at the embedded SpecCP, the subject has to move into the higher phase to have its Case feature licensed. However, since the C is a phase, the subject first has to move the peripheral position of the phase head; i.e. SpecCP. Thus, the Case feature of the subject is not licensed at the embedded SpecCP, and therefore it is still active/visible for Agree. To have its Case licensed, the subject further moves to the matrix SpecVP. In passing, one might suspect that the φ-features on the matrix V could Agree with the subject in the embedded SpecCP, and thus the subject would not need to move to the matrix SpecVP. However, to account for the binding facts Lasnik and Saito (1991) and Sakai (1998) offer, the subject must move to a position high enough to c-command the VP-adjoined element. The embedded SpecCP is not high enough, so the subject must move to the matrix SpecVP, given that the subject in SpecVP can c-command the VP-adjoined position. Therefore, the goal-driven movement proposed by Bošković (2007, 2011) can correctly account for this state of affairs, not the operation Agree.

REFERENCES

[received September 12, 2013, revised and accepted January 23, 2014]

Faculty of Humanities
Hirosaki University
1 Bunkyocho, Hirosaki-shi
Aomori 036-8560
e-mail: chihiro_f@h5.dion.ne.jp