A MINIMALIST APPROACH
TO EXPLETIVE CONSTRUCTIONS IN ENGLISH

KUNIHIRO IWAKURA
Hiroshima University

Chomsky's (1995b, 2000, 2001a, b) analysis of expletive there constructions involves the Caseless there assumption, whereas Lasnik's (1992, 1995a-c) analysis involves the Case-bearing there assumption and Belletti's (1988) assumption of be as a partitive Case-assigner. After showing that both Chomsky's and Lasnik's analyses are untenable, I suggest a new analysis and show that it accounts for the relevant range of data. The suggested analysis extends to other constructions, including copular be constructions and small clause constructions. This analysis is also shown to be capable of accounting for some properties of expletive it constructions.*

Keywords: expletive there constructions, small clauses, empty T, EPP-feature, expletive it constructions

1. Introduction

The expletive there construction has been extensively discussed within the minimalist framework (Chomsky (1991, 1993, 1995a, b, 2000, 2001a, b), Lasnik (1992, 1995a-c)). Although it is widely accepted that expletive there lacks the [number] and [gender] features (Chomsky (2000, 2001a)), there has been much controversy about the Case of there and the Case-checking of the associate of there. Assuming that there lacks Case, Chomsky (2000, 2001a) argues that the associate of there has its Case valued and deleted by probe T or v*1 in structures

* I would like to thank two anonymous EL reviewers for their invaluable suggestions and comments on an earlier version of this paper. I am also grateful to Peter Skaer for his help with this paper. Needless to say, responsibility for the present contents is entirely my own.

1 Chomsky distinguishes the light verb v* from v. The former is /-complete in a construction with full argument, i.e. transitive v or experiencer (Chomsky (2001a: 9, 43 fn. 8)).

© 2002 by the English Linguistic Society of Japan
such as (1b) and (1d) (in which α is a small clause\(^2\)) underlying (1a) and (1c), respectively:

(1) a. There is someone in the room.

(adapted from Lasnik (1992: 384))

b. [T [be [$_\alpha$ someone in the room]]]

c. We expect there to be someone in the room.

(adapted from Lasnik (1992: 384))

d. [C [we [$_v^*P$ $_v^*$-expect [there to [be [$_\alpha$ someone in the room]]]]]]

In (1b), Agree holds between T and someone, valuing and deleting the \(\phi\)-set of T and the Case of someone. There is merged in [Spec, T], deleting the EPP-feature of T and the [person] feature of there, and (1a) is derived.\(^3\) Similarly, (1c) is derived from (1d).

Lasnik (1992, 1995a–c), on the other hand, argues that there has Case, and that the associate of there has its Case checked by be on the basis of Belletti’s (1988) assumption of be as a partitive Case-assigner.

In this paper, I would like to demonstrate that both Chomsky’s and Lasnik’s analyses are untenable. After showing that the Case-bearing there assumption rather than the Caseless there assumption is empirically justifiable, I will advance an alternative analysis which can account for the relevant range of data. It is shown that the suggested analysis extends to other constructions, including copular be constructions and small clause constructions. Furthermore, I will demonstrate that the suggested analysis of small clauses, in conjunction with the assumption

\(^2\) Stowell (1978) suggests that an expletive there construction is derived from a structure like (1b) containing a small clause.

\(^3\) In spite of Chomsky’s (2000, 2001a) suggestion that Case/agreement takes place between α and β in α’s c-command domain, it is necessary to permit Agree to hold between α and β in α’s Spec position to derive expletive there constructions like (1a). To avoid this result, let us assume that the derivation of (1a) involves the agreement between the probe there and the goal T, as suggested by an anonymous reviewer. However, it is unclear whether a specifier rather than a head can function as a probe. Furthermore, there are other examples which require the agreement between a head and its specifier such as the following:

(i) It was believed (held, reasoned, …) that the conclusion was false.

(Chomsky (1981: 125))

According to Chomsky (1981), the that-clause is base-generated in complement position, and it is inserted in Spec of matrix T. The derivation of examples like (i) requires the agreement between T and its specifier.
that expletive *it* appears in Spec of C (Stroik (1990, 1991)), can account for some properties of expletive *it* constructions.

2. Two Previous Analyses of Expletive *There* Constructions

It is widely accepted that *there* lacks the [number] feature since the verb shows agreement with the associate of *there* as in (2a, b):

(2) a. *There seem to be a man in the room.*
 (Chomsky (1995b: 273))

 b. There seems to be a man in the room.
 (ibid.)

With respect to the Case of expletive *there*, however, there has been much controversy. Providing example (3a), Chomsky (1995b) argues that *there* lacks Case:

(3) a. *There seem that a lot of people are intelligent.*
 (Chomsky (1995b: 286))

 b. There T [seem [that [a lot of people] are intelligent]]

If *there* has Case, Case-checking takes place between T and *there* in (3b), and the formal features of *people* raise covertly to check the ϕ-features of T. The derivation converges incorrectly, yielding the ungrammatical (3a). If, on the other hand, *there* lacks Case, the Case-assigning feature of T remains unchecked, which causes the derivation to crash. This argument leads Chomsky (1995b: 286–287) to conclude that *there* has to lack Case.

In this connection, it should be mentioned that Law (1996) discusses the following examples:

(4) a. *There seems to a man [that it is raining outside].
 (Law (1996: 519))

 b. *There seems likely [that John is tall].
 (ibid.)

 c. *There strikes John/someone [that Mary is intelligent].
 (ibid.)

Law (1996: 519) notes that these examples “are ungrammatical for the reason that the number feature on the matrix verb is not checked at Spell-out, the expletive *there* having no number feature.” He goes on to state that “[t]he singular number features on the main verbs cannot be checked by any other singular NP by covert movement at LF either, because of the principle Greed.” The important point to note is that

4 Greed is stated as in (i):
Law's account of examples (4a–c) extends to example (3a).

With Law's account in mind, let us consider (3b) once again. In (3b), covert movement of (the formal features of) a lot of people to T is blocked by Greed. Therefore, the formal features of T remain unchecked, which causes the derivation to crash. This accounts for the deviance of (3a).

In fact, Chomsky’s (1995b) argument for the Caseless there assumption does not hold within the current minimalist framework (Chomsky (2000, 2001a, b)). As noted by Chomsky (2000: 129) himself, people in (3b) with its Case valued and deleted is inactive5 and hence cannot undergo the operation Agree because of the following principle:6

(5) The operations Agree and Move require a goal that is both local and active. (Chomsky (2000: 123))

If Agree does not hold between T and people in (3b), the uninterpretable φ-features of T remain undeleted, causing the derivation to crash. Thus the deviance of (3a) has nothing to do with the Case of there, and hence provides no argument for the Caseless there assumption.

A serious problem with Chomsky's analysis is that the maximization principle in (6) disallows the derivation of expletive there constructions:

(6) Maximize matching effects. (Chomsky (2001a: 15))

According to Chomsky (2001a), the maximization principle allows the derivation of (7b, d), thereby blocking the derivation of (7a, c):

(7) a. *A man is expected [there to be [t in the room]].
 b. There is expected [t to be [a man in the room]].
 (a, b adapted from Chomsky (2001a: 19))
 c. *Someone is likely [there to be [t here]].
 (adapted from Lasnik (1992: 391 fn. 11))
 d. There is likely [t to be [someone here]].

Suppose that the derivation of (7b) has reached the stage (8):

(i) Move raises α to a position β only if morphological properties of α itself would not otherwise be satisfied in the derivation. (Chomsky (1995a: 400))

5 An element is active if it has an uninterpretable feature, and it becomes inactive if it has its uninterpretable feature deleted (Chomsky (2000: 123)).

6 See Chomsky (2000: 129), who states that in (i) below, “Subj is visible ... but inactive, unable to establish agreement with matrix T”:

(i) *There seem [α [subj several people]5 are [pred friends of yours]]
 (Chomsky (2000: 129))
(8) \(T \text{ [be expected [there to be [a man in the room]]]} \)

Agree holds between \(T \) and \(there \), deleting the [person] feature of \(there \), and \(there \) raises to [Spec, T] in accordance with the maximization principle. Agree also holds between T and \(man \), valuing and deleting the \(\phi \)-features of T and the Case of \(man \). The derivation converges, yielding (7b). This excludes the possibility of deriving (7a) from (8), as argued by Chomsky. Similar remarks hold for paired examples (7c, d).

With this principle in mind, consider the following examples:

(9) a. (=(1a)) There is someone in the room.
 b. Someone is in the room.

(10) a. There seems to be someone in the room.
 b. Someone seems to be in the room.

(Chomsky (1995b: 366))

(11) a. (=-(1c)) We expect there to be someone in the room.
 b. We expect someone to be in the room.

Examples (9a, b) are derived from a structure such as (12):

(12) \(T\text{ [be [}_a\text{ someone in the room]]} \)

Agree holds between T and \(someone \), valuing and deleting the relevant features, \(someone \) raises to [Spec, T] in accordance with the maximization principle, and example (9b) is yielded. The important point to note is that the maximization principle allows the derivation of example (9b) from (12), thereby blocking the derivation of expletive there construction (9a).

Turning next to (10a, b), we see that the structure underlying them is (13):

(13) \([TP \text{ [T to]} \text{ [be [}_a\text{ someone in the room]]}] \)

What is relevant here is the assumption that infinitival T in an ECM or raising construction lacks an EPP-feature (Chomsky (2001a)). Agree holds between infinitival T and \(someone \), but if infinitival T lacks an EPP-feature, \(someone \) cannot raise to [Spec, T]. Merger of \(there \) in [Spec, T] and other relevant operations yield (14):

(14) \([TP \text{ T} \text{ [VP seem [TP there [T to] [be [}_a\text{ someone in the room]]]]}]\)

Agree holds between matrix T and \(there \), and \(there \) raises to [Spec, T], yielding example (10a).

Example (10b), on the other hand, is derived from a structure such as (15):

(15) \([TP \text{ T} \text{ [VP seem [TP [T to] [be [}_a\text{ someone in the room]]]]}]\)

Agree holds between matrix T and \(someone \), and \(someone \) raises to
[Spec, T], yielding example (10b).

Similarly, example (11a) is derived from a structure like (16):

(16) \[v^*P v^*-expect [VP tv [TP there [T to] [be [a someone in the room]]]]\]

Thus we see that the derivation of (10a, b) and (11a) is unproblematic under the assumption that infinitival T in an ECM or raising construction lacks an EPP-feature.

This assumption, however, gives rise to problems with respect to example (11b). Structure (13) also underlies (11b). Agree holds between infinitival T and someone, but if infinitival T lacks an EPP-feature, someone cannot raise to [Spec, T]. Merger of expect with TP, and other relevant operations yield (17):

(17) \[v^*P v^*-expect [VP tv [T to] [be [a someone in the room]]]]\]

If one adopts LocusTv* (which indicates that the locus of Case/agreement/EPP is T, v* (Chomsky (2001a: 9)), Agree holds between v* and someone, valuing and deleting the relevant features, and the derivation converges incorrectly, yielding the ungrammatical (18):

(18) *We expect to be someone in the room.

Furthermore, the grammatical (11b) cannot be generated. To block (18) while still permitting (11b), therefore, it is necessary to assume, following Chomsky (2000), that infinitival T in an ECM or raising construction has an EPP-feature.

This assumption does not affect the derivation of (9b), but affects the derivation of (10a, b) and (11a). Given that infinitival T in an ECM or raising construction has an EPP-feature, Agree holds between infinitival T and someone in (13), and someone raises to [Spec, T], yielding (19):

(19) \[TP someone [T to] [be [a t in the room]]\]

It is important to note that the derivation of (19) from (13) renders it impossible to yield structures (14) and (16), thereby blocking the derivation of (10a) and (11a). Thus we see that if infinitival T in an ECM or raising construction lacks an EPP-feature, one has to permit the derivation of the deviant (18), thereby blocking the derivation of the grammatical (11b). If, on the other hand, infinitival T in an ECM or raising construction has an EPP-feature, one cannot derive expletive there constructions (10a) and (11a).

Having seen that Chomsky’s analysis of expletive there constructions is problematic, let us next consider Lasnik’s analysis. It should be noted that his analysis cannot be adopted within the current minimalist
framework involving the principle (5). To see this, consider structure (20b) underlying (20a):

(20) a. (=9a)) There is someone in the room.
 b. There T [be [someone in the room]]

Given that be is a Case-assigner, Agree holds between be and someone, valuing and deleting the Case of someone. The important point to note is that someone with its Case deleted, being inactive, cannot undergo Agree.\(^7\) The uninterpretable \(\phi\)-features of T remain undeleted, causing the derivation to crash. This excludes the possibility of yielding expletive there constructions like (20a) within the current minimalist framework.\(^8\)

This problem may be solved by revising the principle (5) to (21a, b):

(21) a. The operation Agree requires a goal that is both local and visible.\(^9\)
 b. The operation Move requires a goal that is both local and active.

According to Chomsky (2001a: 12) “features deleted within the cyclic computation remain until the strong phase level.” In (20b), therefore, the deleted Case of someone remains visible. Given (21a), Agree can hold between T and someone, valuing and deleting the \(\phi\)-features of T. There is merged in [Spec, T], valuing and deleting the Case of there and deleting the [person] feature of there, and sentence (20a) is yielded.

Lasnik’s analysis involving the assumption of be as an optional Case-assigner gives rise to a problem of a different kind with respect to examples like the following:

(22) a. Some fishermen are good swimmers.
 b. T [be [some fishermen good swimmers]]

If be has the Case-assigning property, Agree holds between be and fishermen, valuing and deleting the Case of fishermen. Given (21a),

\(^7\) This holds regardless of whether partitive Case is interpretable or uninterpretable. Lasnik (1995b: 17) suggests that partitive Case has semantic import, but Bosković (1997: 102) points out that Lasnik’s suggestion is not unproblematic.

\(^8\) Suppose that be is optionally assigned the Case-assigning property (Lasnik (1992)). If be in (20b) lacks the Case-assigning property, Agree holds between T and someone, valuing and deleting the Case of someone. In that case, there cannot have its Case deleted, which causes the derivation to crash.

\(^9\) It should be noted that visible goals include active goals.
Agree holds between T and $fishermen$, valuing and deleting the ϕ-features of T. It should be noted that some $fishermen$ with its Case deleted cannot raise to [Spec, T] because of (21b). If, on the other hand, be lacks the Case-assigning property, Agree holds between T and $fishermen$, valuing and deleting the ϕ-features of T and the Case of $fishermen$, and some $fishermen$ raises to [Spec, T], valuing and deleting the relevant features. The important point to note is that there is no uncontrived way to value and delete the Case of $swimmers$. The derivation crashes, and example (22a) is not generated.\(^{10}\)

The preceding discussion has shown that both Chomsky's and Lasnik's analyses are untenable.

3. The Case-Bearing $There$ Assumption vs. the Caseless $There$ Assumption

Before proceeding to advance an alternative analysis of $there$ expletive constructions, it is necessary to consider whether $there$ has Case or not. In this section, I would like to show that the Case-bearing $there$ assumption rather than the Caseless $there$ assumption is empirically justifiable. First of all, it is important to note that Case-bearing elements can occur in a Case position, but cannot occur in a non-Case position, in accordance with the generalization (23):

(23) Case-bearing elements can occur in a Case position.

To see this, consider the following examples:

(24) a. I believe [John to be selfish].
 b. *It is believed [John to be selfish].
 c. I believe [it to be unlikely that he'll come].

(Radford (1988: 320))

 d. *It is believed [it to be unlikely that he'll come].

John, which has Case, can appear in a Case position, but cannot appear in a non-Case position as in (24a, b). Similarly, expletive it, which has Case, can appear in a Case position, but cannot appear in a non-Case position as in (24c, d).

Next, it is important to note that expletive $there$ can occur in a Case position, but cannot occur in a non-Case position as in (25a, b):

(25) a. (=11a) We expect there to be someone in the room.

\(^{10}\) Incidentally, it is unclear how example (22a) is generated in Chomsky's (2000, 2001a, b) theory.
b. *It is expected there to be someone in the room.

Given that expletive *there* has Case, its occurrence in a Case position is consistent with the generalization (23). If, on the other hand, expletive *there* lacks Case, its occurrence in a Case position is inconsistent with the generalization. In fact, expletive *there* has to be treated as the only exception to (23). Under the Caseless *there* assumption, the generalization (23) has to be changed to (26):

(26) Case-bearing elements and expletive *there* can occur in a Case position.

The Case-bearing *there* assumption, therefore, is preferable in that it allows us to preserve the generalization (23).

Second, the Case-bearing *there* assumption is consistent with the generalization (27):

(27) Case-bearing elements can appear in the context P/for ___.

To see the point, consider the following examples:

(28) a. With the meeting to start at 1:00, ...

 (McCawley (1983: 277))

 b. With there (probably) to be a meeting at 1:00, we’d better have a quick lunch.

 (McCawley (1983: 275))

(29) a. We want very much for John to win.

 (Chomsky and Lasnik (1977: 478))

 b. The administration is eager for there to be at least some students in class on time.

 (Bresnan (1971: 264))

In (28a), *the meeting*, which has Case, appears in the context with ___. The important point to note is that *there* appears in the same context in (28b). In (29a), *John*, which has Case, appears in the context for ___. It should be noted that *there* appears in the same context in (29b).

Under the Caseless *there* assumption, expletive *there* has to be treated as the only exception to the generalization (27) as in (30):

(30) Case-bearing elements and expletive *there* can appear in the context P/for ___.

These arguments not only justify the Case-bearing *there* assumption but also render the Caseless *there* assumption untenable.11

11 Arguing against the Caseless *there* assumption, Groat (1999) provides the following examples as an additional piece of evidence for the Case-bearing *there* assumption:

(i) a. There looks [as if there is a problem with this analysis].

 (Groat (1999: 34))
4. An Alternative Analysis

The preceding discussion has shown that the Case-bearing *there* assumption rather than the Caseless *there* assumption is empirically justifiable. In this section, I would like to advance an alternative analysis of expletive *there* constructions. Relevant examples include the following:

(31) a. There is someone in the room.
 b. Someone is in the room.
 c. T [be [ₐ someone in the room]]

(32) a. There seems to be someone in the room.
 b. Someone seems to be in the room.
 c. [TP [T to] [be [ₐ someone in the room]]]

(33) a. We expect there to be someone in the room.
 b. We expect someone to be in the room.
 c. [TP [T to] [be [ₐ someone in the room]]]

The derivation of (31a) from (31c) requires *someone* to remain in situ. The derivation of (31b) from (31c), on the other hand, requires raising of *someone* to [Spec, T]. Similar remarks apply to paired examples (32a, b) and (33a, b). To implement this, I suggest the following:

(34) a. A small clause is the maximal projection of empty T with ₙ-features and an EPP-feature.¹²,¹³

b. Empty T optionally has the Case-assigning property.¹⁴

¹² This is based on Hornstein and Lightfoot's (1987) analysis of a small clause as the maximal projection of empty INFL.

¹³ Chomsky (2001a) proposes to associate EPP with ₙ-completeness: T and v* with a complete set of ₙ-features allow an EPP-feature. Furthermore, Chomsky suggests the following:

(i) ₙ must have a complete set of ₙ-features (it must be ₙ-complete) to delete uninterpretable features of the paired matching element ₂.

(Chomsky (2001a: 6))

¹⁴ It is not unique here to resort to the notion “optionality.” In fact, Lasnik (1992: 393) suggests that Case assignment should be optional. His analysis of expletive *there* constructions is based on Belletti's (1988) assumption of *be* as an optional Case-assigner.

Bošković (1995) argues that clauses have to be optionally assigned Case to account for the fact that although clauses can appear in non-Case positions, they can appear in Case positions (e.g. subject position), and the fact that clauses in Case positions, unlike clauses in non-Case positions, can undergo topicalization (cf.
That empty T has an EPP-feature is consistent with the fact that a small clause, like other clauses, has a subject.

As a matter of fact, there is evidence that empty T has to have an EPP-feature. To see this, consider the following examples:

(35) a. We want [that work done by John].
(b. *We want [done that work by John].

Example (35a) is derived from a structure like (36):

(36) [TP T done that work by John]

Agree holds between empty T and work, and if empty T has an EPP-feature, *that work* raises to [Spec, T], yielding (37):

(37) [TP that work T done by John]

Merger of want with TP and other relevant operations yield example (35a). If, on the other hand, empty T in (36) lacks an EPP-feature, *that work* cannot raise to [Spec, T], and the ungrammatical (35b) is yielded. To derive (35a) while still blocking (35b), therefore, empty T has to have an EPP-feature.

Given (34a), the structure underlying (31a, b) is (38):

(38)

Suppose that empty T has the Case-assigning property. Agree holds

Stowell (1981)).

Furthermore, let us consider the following examples:

(i) a. John tried [PRO to win].
(b. *John believed [PRO to be crazy].

(Bošković (1996: 271))

Bošković (1996) argues that infinitival to in (ia) has the feature which can check the null Case of PRO, and that infinitival to in (ib) lacks the feature; hence the difference in grammaticality between (ia) and (ib). This is tantamount to stating that infinitival to optionally has the null Case-assigning property.
between empty T and someone, valuing and deleting the ϕ-features of T and the Case of someone, and deleting the EPP-feature of T. Agree has to hold between matrix T and someone, but someone with its Case deleted cannot undergo Agree because of the principle (5).15 To avoid this undesirable result, I adopt principles (21a, b) rather than principle (5).16 In (38), the deleted Case of someone remains visible. Principle (21a), therefore, allows Agree to hold between matrix T and someone, valuing and deleting the ϕ-features of T. There is merged in Sec of matrix T, deleting the EPP-feature of T, and valuing and deleting the Case of there, and example (31a) is generated.

Suppose that empty T in (38) lacks the Case-assigning property. In that case, Agree holds between matrix T and someone, valuing and deleting the ϕ-features of T and the Case of someone, and someone raises to Spec of matrix T, deleting the EPP-feature of T. The derivation converges, yielding example (31b). Thus, the suggested analysis can generate both (31a) and (31b) from structure (38).17, 18

15 I am grateful to an anonymous reviewer for pointing out this problem to me.

16 Principle (5) is conceptually preferable to principles (21a, b) if it is empirically justifiable. However, relevant empirical facts, including those discussed in the present paper, require that two different operations, Agree and Move, be subject to different principles. Furthermore, in spite of Chomsky’s (2001a: 6) suggestion that Agree requires an active probe, there is evidence that Agree requires a visible probe.

17 In this connection, let us consider an example like (ia), which is derived from (ib):

\begin{enumerate}
 \item a. *There is a Canadian a good doctor. \quad \text{(Stowell (1978: 467))}
 \item b. T [be [TP a Canadian T a good doctor]]
\end{enumerate}

If empty T has the Case-assigning property, it values and deletes the Case of doctor. Agree holds between matrix T and Canadian, valuing and deleting the relevant features, and a Canadian has to raise to [Spec, T] in accordance with the maximization principle. Thus we see that the maximization principle blocks the derivation of (ia) from (ib). If, on the other hand, empty T lacks the Case-assigning property, the Case of doctor remains undeleted, which causes the derivation to crash. Regardless of whether empty T has the Case-assigning property or not, there is no possibility of deriving (ia) from (ib). This accounts for the deviance of the example.

18 With respect to the θ-role assignment of someone in (38), I follow Stowell’s (1981) principle in (i):

\begin{enumerate}
 \item θ-roles can only be assigned to A-chains that are headed by a position captured by PRO or Case. \quad \text{(Stowell (1981: 134))}
\end{enumerate}

If empty T in (38) has the Case-assigning property, someone in Spec of empty T
Let us next consider examples (32a, b). The structure underlying them is the following:

(39) \[TP [T to] [be [TP someone T in the room]]]

Suppose that empty T has the Case-assigning property. Agree holds between T and someone, valuing and deleting the relevant features. To permit example (11b) while still blocking (18), I assume, following Chomsky (2000), that infinitival T in an ECM or raising construction has an EPP-feature. Merger of there with Spec of infinitival T, and other relevant operations yield (40):

(40) \[TP T [seems [TP there [T to] [be [TP someone T in the room]]]]]

Agree holds between matrix T and there, valuing and deleting the relevant features, and there raises to [Spec, T], yielding example (32a).

If, on the other hand, empty T in (39) lacks the Case-assigning property, Agree holds between infinitival T and someone, someone raises to Spec of infinitival T, and other relevant operations yield (41):

(41) \[TP T [seems [TP someone to [be [t T in the room]]]]]

Agree holds between matrix T and someone, and someone raises to Spec of matrix T, yielding example (32b).

Let us next turn to examples (33a, b). In these cases, too, structure (39) underlies them. If empty T has the Case-assigning property, it values and deletes the Case of someone, and merger of there in Spec of infinitival T yields (42):

(42) \[TP there [T to] [be [TP someone T in the room]]]

Merger of expect with TP and other relevant operations yield (33a).

If, on the other hand, empty T in (39) lacks the Case-assigning property, Agree holds between infinitival T and someone, and someone raises to Spec of infinitival T, yielding (43):

(43) \[TP someone [T to] [be [TP t T in the room]]]

Merger of expect with TP and other relevant operations yield (33b). Thus we see that the suggested analysis derives both the (a) and (b) examples in (31) through (33) in accordance with the maximization principle.

is assigned a \(\theta \)-role by in the room in accordance with (i). If empty T lacks the Case-assigning property, the chain consisting of someone raised to Spec of matrix T and its trace in Spec of empty T is assigned a \(\theta \)-role in accordance with (i).
Let us proceed to show how other relevant examples can be accounted for in the suggested analysis. We will begin by considering examples (7a–d), repeated as (44a–d):

(44)
 a. *A man is expected [there to be [t in the room]].
 b. There is expected [t to be [a man in the room]].
 c. *Someone is likely [there to be [t here]].
 d. There is likely [t to be [someone here]].

A structure like (45) is constructed at some stage of the derivation of (44b):

(45) \[TP [T to] [be [TP a man T in the room]] \]

If empty T has the Case-assigning property, it values and deletes the Case of man. It should be noted that the deleted Case of man remains visible. Principle (21a) allows Agree to hold between infinitival T and man, valuing and deleting the [person] feature of T. Merger of there in Spec of infinitival T and other relevant operations yield (46):

(46) There T [be [expected [t [T to] [be [TP a man T [in the room]]]]]]

It should be noted that man is visible, and that principle (21a) allows Agree to hold between matrix T and man, valuing and deleting the relevant features. The derivation converges, yielding (44b).\(^{19}\)

If, on the other hand, empty T in (45) lacks the Case-assigning property, Agree holds between infinitival T and man, valuing and deleting the [person] feature of T, a man raises to Spec of infinitival T, and other relevant operations yield (47):

(47) T [be [expected [a man to [be [TP t in the room]]]]]

Agree holds between matrix T and man, and a man raises to [Spec, T] in accordance with the maximization principle, yielding example (48):

(48) A man is expected [t to be [t in the room]].

This excludes the possibility of deriving (44a). Thus the maximization principle allows the derivation of (44b) while still blocking (44a). Similar remarks apply to paired examples (44c, d).

\(^{19}\) It should be noted that the agreement between matrix T and man disallows the derivation of deviant example (i) (I am grateful to an anonymous reviewer for drawing my attention to this issue):

(i) *There are expected to be a man in the room.
We will proceed to show that the suggested analysis accounts for other constructions, including the following:

(49) a. John is a fine mathematician. (Chomsky (1986: 95))
 b. Some fishermen are good swimmers.
(50) a. I consider [John a fine mathematician].
 (adapted from Chomsky (1986: 95))
 b. I consider [that a great opportunity here].
 (Bresnan (1983: 79))

With respect to predicate nominals in examples like (49) and (50), it has been suggested that they need not have Case. It would be preferable, however, if we could dispense with such an exceptional treatment of predicate nominals. Given that example (49a) is derived from a structure containing a small clause (Chomsky (1995b)), the structure underlying (49a) is the following:

(51) T [be [TP John T a fine mathematician]]

If empty T has the Case-assigning property, Agree holds between empty T and mathematician, valuing and deleting the ϕ-features of T and the Case of mathematician. It should be noted that the deleted ϕ-features of empty T remain visible. Agree also holds between empty T and John (see fn. 16), deleting the EPP-feature of T. Next, Agree holds between matrix T and John, and John raises to [Spec, T], yielding example (49a). If, on the other hand, empty T lacks the Case-assigning property, mathematician cannot have its Case deleted, which causes the derivation to crash. Thus we see that when empty T has the Case-assigning property, we can generate (49a) from (51). Similar remarks apply to (49b).

20 For instance, Law (1996: 505) states that “[t]here is good reason to think that the post-copular NPs in (53) [(i)] do not need Case”:

(53) a. We considered [these proposals (to be) good solutions to problem].
 (Law (1996: 504))
 b. I believed [the students (to be) suitable candidates for the jobs]. (ibid.)

See also Nakajima (1984, 1994) and Travis (1996) for a similar suggestion.

21 This agreement allows us to block the derivation of deviant examples like (ia)
(I am grateful to an anonymous reviewer for drawing my attention to this issue):

(53) a. *John is fine mathematicians.
 b. [John T fine mathematicians]

After the agreement between T and mathematicians in (ib), the agreement between T and John creates a feature mismatch, which cancels the derivation (Chomsky (1995: 309)). This accounts for the deviance of (ia).
Let us next turn to (50a). This example is derived from a structure like (52):

(52) [consider \[TP John T a fine mathematician]]

If empty T has the Case-assigning property, Agree holds between empty T and \textit{mathematician}, valuing and deleting the \(\phi\)-features of T and the Case of \textit{mathematician}. It should be noted that Agree also holds between empty T and \textit{John}, deleting the EPP-feature of T.\(^{22}\) Other relevant operations yield example (50a). A similar analysis holds for (50b). Thus the suggested analysis of small clauses generates examples like (49a, b) and (50a, b) without affecting the generalization that nominals have Case.\(^{23}\)

5. Expletive \textit{It} Constructions

In addition to expletive \textit{there} constructions, English has expletive \textit{it} constructions. It is a well-known fact that expletive \textit{it} can appear in subject position of a small clause (Radford (1988)), and that if expletive \textit{it} fails to appear in subject position of a small clause, followed by the associate of \textit{it}, the resulting sentence is deviant (Authier (1991)):

(53) a. I believe [it inevitable that war will break out].

(Radford (1988: 325))

b. *I believe [inevitable that war will break out].

c. I find [it inconceivable that he should have gone].

(Radford (1988: 325))

\(^{22}\) This agreement disallows the derivation of deviant example (i) in the same way as example (ia) in fn. 21. (I am grateful for an anonymous reviewer for drawing my attention to this issue):

(i) *I consider John fine mathematicians.

What has to be accounted for is the deviance of examples such as the following, as pointed out by an anonymous reviewer:

(ii) a. *I consider [there a fine mathematician].

b. *We consider [there a man in the room].

(Lasnik (1992: 384))

I cannot provide a satisfactory account for their deviance at present. One possibility is to assume, following Chomsky (1995: 362), that expletive \textit{there} can be merged only in Spec of nonempty T. This disallows the derivation of (iia, b) and examples such as (iiia, b):

(iii) a. *there’s fear for John

b. *there arrival of a man

(Lasnik (1992: 391 fn. 11))

\(^{23}\) Nominals include NPs and DPs (Chomsky (2000a, b)). For the distinction between NPs and DPs, see Chomsky (1995b: 342, 2000: 139).
d. *I find [inconceivable that he should have gone].

With respect to expletive *it*, I follow Stroik (1990, 1991) in assuming that expletive *it* occurs in Spec of *C*. Furthermore, I assume that *C* is optionally assigned an EPP-feature, and that if *C* has an EPP-feature, it has to have *it* in [Spec, *C*] as in (54a) to have its EPP-feature deleted, in contrast with (54b) containing no EPP-feature in *C*:

(54) a. \[\text{CP} \text{it} [c \text{that}] [\text{TP} \ldots]\]
 \[\text{EPP}\]

b. \[\text{CP} [c \text{that}] [\text{TP} \ldots]\]

On the basis of the fact that an “extraposed” clause appears in a non-Case position, I suggest (55a) in contrast with (55b):

(55) a. CP with [EPP] in C lacks Case.

b. CP without [EPP] in C optionally has Case.

(Bošković (1995))

With this much as background, let us consider examples (56a) and (56b), which are derived from (57a) and (57b), respectively:

(56) a. [That John made a mistake] is obvious.

b. It is obvious [that John made a mistake].

(57) a.

\[
\text{TP}
\]

\[
\text{CP}
\]

\[
\text{T'}
\]

\[
\text{C}
\]

that

\[
\text{TP}
\]

\[
\text{T}
\]

\[
\text{AP}
\]

\[
\text{obvious}
\]

\[
\text{John made a mistake}
\]

24 That expletive *there* cannot occur in [Spec, *C*] in (54a) is attributable to the restriction on its merger: it can be merged only in Spec of nonempty *T* (see fn. 22).

25 See Bošković (1995), who argues that clauses optionally have Case.

26 As mentioned above, I follow Stowell’s principle in (i) of fn. 18. In (57a), if empty *T* has the Case-assigning property, CP is assigned a \(\theta\)-role by its predicate *obvious*. If empty *T* lacks the Case-assigning property, the chain consisting of CP raised to Spec of matrix *T* and its trace in Spec of empty *T* is assigned a \(\theta\)-role. In (57b), CP is adjoined to AP. I follow Postal and Pullum (1988) in assuming that expletive *it* can occur in a \(\theta\)-marked position. If empty *T* has the Case-assigning property, expletive *it* raised to Spec of empty *T* is assigned a \(\theta\)-role by *obvious*. If empty *T* lacks the Case-assigning property, the chain consisting of expletive *it* raised to Spec of matrix *T* and its trace in Spec of empty *T* is assigned a \(\theta\)-role by *obvious*. The \(\theta\)-role of *it* is transmitted to CP by associating *it* with CP. The details of the issue require much more future research.
b.

```
  TP
   T
      AP
             CP
                obvious
          it
        C'
          C
            [EPP]
            John made a mistake

        TP
```

Suppose that CP in (57a) has Case, and that empty T lacks the Case-assigning property. Agree holds between T and CP, valuing and deleting the relevant features, and deleting the EPP-feature of empty T. Merger of be with TP, and other relevant operations yield (58):

(58) \([_{TP} T] [_{VP} be] [_{TP} [_{CP} that John made a mistake] T [_{AP} obvious]]\]

Agree holds between matrix T and CP, valuing and deleting the relevant features, and CP raises to [Spec, T], deleting the EPP-feature of T. The derivation converges, yielding example (56a).

If, on the other hand, CP in (57a) lacks Case, Agree cannot hold between empty T and CP because of the principle (21a). The uninterpretable \(\phi \)-features of T remain undeleted, which causes the derivation to crash.

Let us next turn to (57b). The EPP-feature of C is deleted by it. Since CP lacks Case, it cannot undergo Agree because of the principle (21a). Agree holds between T and it, valuing and deleting the relevant features, it raises to [Spec, T], deleting the EPP-feature of T, and other relevant operations yield (59):

(59) \([_{TP} T] [_{VP} be] [_{TP} it T] [_{AP} [_{AP} obvious] [_{CP} t [_{C} that] [_{TP} John made a mistake]]]]\]

Agree holds between matrix T and it, it raises to [Spec, T], and other relevant operations yield (56b).

We are now in a position to consider examples (53a–d). The structure underlying (53a) is the following:
Agree holds between empty T and it, valuing and deleting the relevant features, it raises to [Spec, T], deleting the EPP-feature of T, and structure (61) is yielded:

(61)
\[
\text{TP it} \quad \text{T AP AP inevitable CP CP that} \quad \text{[EPP]} \quad \text{TP war will break out}
\]

Merger of believe with TP and other relevant operations yield (53a). Similar remarks apply to (53c).

Let us next turn to deviant examples (53b, d). The structure underlying (53b) is the following:

(62)
\[
\text{TP T AP AP inevitable CP CP that} \quad \text{C TP war will break out}
\]

To derive (53b) from (62), CP has to remain in situ. If, however, CP remains in situ, T cannot have its EPP-feature deleted, which causes the derivation to crash. This accounts for the deviance of (53b). The same account holds for (53d). Thus, the suggested analysis permits the generation of (53a, c) while still blocking (53b, d), thereby accounting for the obligatory occurrence of it in examples like (53a, c).

It is a well-known fact that blame-class verbs must have expletive it in object position, followed by the associate of it, that mention-class verbs may or may not have it in the same position, and that say-class verbs cannot have it in that position, as shown in the following:
A MINIMALIST APPROACH TO EXPLETIVE CONSTRUCTIONS

(63) a. I blame it on you that we can’t go.
 (Postal and Pullum (1988: 643))

b. *I blame on you that we can’t go.

c. They brought it to his attention that his daughter was sick.
 (Postal and Pullum (1988: 643))

d. *They brought to his attention that his daughter was sick.

(64) a. They never mentioned it to the candidate that the job was poorly paid.
 (Authier (1991: 730))

b. They never mentioned to the candidate that the job was poorly paid.
 (ibid.)

c. Keep it in mind that you are expected to make a speech next Monday.

d. Keep in mind that you are expected to make a speech next Monday.

(65) a. *John said it to his friends that we had betrayed him.
 (Emonds (1976: 124))

b. John said to his friends that we had betrayed him. (ibid.)

c. *John learned it from Mary that she got engaged.

d. John learned from Mary that she got engaged.

To account for these facts, I suggest that verbs are divided into three kinds: verbs that always have EPP-features, verbs that optionally have them, and verbs that lack them. Furthermore, I suggest the following rules:

(66) a. If V with [EPP] selects C, it must select C with [EPP].

b. If V without [EPP] selects C, it must select C without [EPP].

Given that blame-class verbs have EPP-features, the structure underlying example (63a) is the following (Chomsky (1993, 1995b)):

(67) \[\text{VP} \]
 \[\text{PP} \]
 \[\text{on you} \]
 \[\text{V'} \]
 \[\text{V} \]
 \[\text{[EPP]} \]
 \[\text{PP} \]
 \[\text{blame} \]
 \[\text{[EPP]} \]
 \[\text{CP} \]
 \[\text{it} \]
 \[\text{C'} \]
 \[\text{C} \]
 \[\text{[EPP]} \]
 \[\text{TP} \]
 \[\text{we can’t go} \]
With respect to the locus of Case/agreement/EPP, I adopt LocusTV (which indicates that the locus is T, V) rather than LocusTV* (which indicates that the locus is T, v*) (Chomsky (2001a: 9)). Agree holds between V and it, valuing and deleting the relevant features, it raises to [Spec, V], deleting the EPP-feature of V, and (68) is yielded:

(68) VP
 it
 V' PP
 on you V' V
 blame P
 t
 C' C
 that TP
 we can’t go

Merger of the light verb v* with VP, raising of blame to v*, and other relevant operations yield (69):

(69) [TP T [vP I v*-blame [VP it [PP on you] t, [CP t [C that] [TP we can’t go]]]]]

Agree holds between T and I, and I raises to [Spec, T], yielding example (63a).

Turning next to example (63b), we see that the structure underlying it is (70):

(70) [VP [PP on you] [V blame] [CP [C that] [TP we can’t go]] [EPP]

The important point to note is that blame with [EPP] cannot select C without [EPP] (i.e. CP without it) because of (66a), and that structure (70) is not generated. This excludes the possibility of deriving (63b). Thus the suggested analysis can generate (63a) while still blocking (63b). Similar remarks apply to paired examples (63c, d).

Let us next consider examples (64a, b). Given rules (66a, b) and the assumption that mention-class verbs optionally have EPP-features, the structures underlying (64a) and (64b) are (71a) and (71b), respectively:
(71) a.

```
(73) [VP [PP to the candidate] [V say] [CP it [C that] [TP we had betrayed him]]]
```

In (71a), Agree holds between V and it, and it raises to [Spec, V], yielding (72):

(72) \[\text{[VP it [PP to the candidate] [V mention] [CP \text{that} [TP the job was poorly paid]]]}\]

Merger of v* with VP, raising of mention to v*, and other relevant operations yield (64a).

Turning next to (71b), we see that if CP has Case, Agree holds between V and CP, valuing and deleting the relevant features. Merger of v* with VP, raising of mention to v*, and other relevant operations yield (64b). Thus, when mention has an EPP-feature, example (64a) is generated, and when the verb lacks an EPP-feature, example (64b) is generated. Similar remarks hold for paired examples (64c, d).

Let us finally consider examples (65a, b). The structure underlying (65a) is the following:

(73) \[\text{[VP [PP to his friends] [V say] [CP it [C that] [TP we had betrayed him]]]}\]

It should be noted that say without [EPP] cannot select C with [EPP] (i.e. CP with it) because of (66b), and that structure (73) is not yielded.
This excludes the possibility of deriving (65a).

Let us next turn to (65b). Given rule (66b) and the assumption that say lacks an EPP-feature, the structure underlying (65b) is the following:

(74)

If CP has Case, Agree holds between V and CP, valuing and deleting the relevant features. Merger of v* with VP, raising of say to v* and other relevant operations yield (65b). Thus the suggested analysis can derive (65b) while still blocking (65a). Similar remarks hold for paired examples (65c, d).

8. Conclusion

To summarize, we have seen that both Chomsky’s and Lasnik’s analyses of expletive there constructions are untenable. The Case-bearing there assumption is justified by the generalizations concerning the occurrence of Case-bearing elements in a Case position and in the context P/for ___. To yield both expletive there constructions and the corresponding there-lacking constructions, I have suggested that a small clause is the maximal projection of empty T with φ-features and an EPP-feature, and that empty T optionally has the Case-assigning property. It has been shown that the suggested analysis accounts for the relevant range of data. This analysis extends to copular be constructions and small clause constructions. The suggested analysis, in conjunction with the assumption that expletive it occurs in Spec of C, accounts for some properties of expletive it constructions.

On the basis of the preceding discussion, it can be concluded that expletive there has Case, that a small clause is the maximal projection of empty T with φ-features and an EPP-feature, that empty T optionally has the Case-assigning property, that predicate nominals, like other nominals, have Case, and that expletive it appears in Spec of C with an
EPP-feature.

REFERENCES

Chomsky, Noam (2001b) “Beyond Explanatory Adequacy,” ms., MIT.

Faculty of Integrated Arts and Sciences
Hiroshima University
1–7–1 Kagamiyama, Higashihiroshima-shi 739–8521
e-mail: kuni@hiroshima-u.ac.jp