Statural Growth in 31 Japanese Patients with SHOX Haploinsufficiency: Support for a Disadvantageous Effect of Gonadal Estrogens

MAKI FUKAMI, YOSHIKAZU NISHI*, YUKIHIRO HASEGAWA**, YOKO MIYOSHI***, TAKASHI OKABE#, NOBUHIKO HAGA##, TOSHIRO NAGAI###, TOSHIKI TANAKAb AND TSUTOMU OGATA

Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo 154-8567, Japan
*Department of Pediatrics, Hiroshima Red-Cross Hospital, Hiroshima 730-8619, Japan
**Department of Endocrinology and Metabolism, Tokyo Metropolitan Kiyose Children’s Hospital, Tokyo 204-0024, Japan
***Department of Pediatrics, Osaka University School of Medicine, Osaka 565-0871, Japan
#Department of Pediatrics, Toyama Municipal Hospital, Toyama 939-8511, Japan
##Department of Orthopedics, Shizuoka Children’s Hospital, Shizuoka 420-8660, Japan
###Department of Pediatrics, Dokkyo University School of Medicine Koshigaya Hospital, Koshigaya 343-0845, Japan
bDivision of Endocrinology and Metabolism, National Research Center for Child Health and Development, Tokyo 157-8535, Japan

Abstract. Although gonadal estrogens are known to facilitate the development of skeletal lesions in SHOX haploinsufficiency, controversy exists as to whether gonadal estrogens are disadvantageous to pubertal growth. To clarify this matter, we analyzed growth pattern in 31 Japanese patients with a normal karyotype and molecuarily confirmed SHOX haploinsufficiency. The mean height SD score at the diagnosis of SHOX haploinsufficiency was similar between patients identified in childhood and those identified in adulthood (–2.7 ± 0.8 [n = 15] vs. –2.4 ± 0.7 [n = 16], P = 0.36), and was significantly lower in patients identified by the studies for short stature than in those ascertained by the familial studies of the probands both in childhood (–3.0 ± 0.6 [n = 11] vs. –1.8 ± 0.5 [n = 4], P = 0.0051) and in adulthood (–3.0 ± 0.9 [n = 5] vs. –2.2 ± 0.5 [n = 11], P = 0.040). Analysis of longitudinal paired growth data obtained in seven females showed a significantly different mean height SD score between childhood and adulthood (–2.3 ± 0.5 vs. –2.9 ± 0.8, P = 0.0060). The results imply that gonadal estrogens have a deleterious effect on pubertal growth in SHOX haploinsufficiency, and that the growth disadvantage is recognizable by longitudinal rather than cross-sectional growth studies.

Key words: SHOX haploinsufficiency, Pubertal growth, Gonadal estrogen, Longitudinal analysis

SHOX (short stature homeobox containing) gene on the short arm pseudoautosomal region of the human sex chromosomes is relevant to the development of growth failure and skeletal features in Turner syndrome. Clinical studies in patients with SHOX mutations or microdeletions involving SHOX as the sole disease gene have indicated that SHOX haploinsufficiency causes not only short stature but also Turner skeletal features such as short metacarpals, cubitus valgus, and Madelung deformity characteristic of Léri-Weill dyschondrosteosis (LWD) [1–8]. Since skeletal features are more severe in females than in males and become obvious with puberty, it has been suggested that gonadal estrogens exert a maturational effect on skeletal tissues that are susceptible to unbalanced premature fusion of growth plates because of SHOX haploinsufficiency, facilitating the development of severe skeletal lesions such as Madelung deformity in a female-dominant and pubertal tempo-dependent fashion [2, 4, 5].

It remains to be clarified, however, whether gonadal estrogens are disadvantageous to pubertal growth in
patients with SHOX haploinsufficiency. Kosho et al. [2] and Fukami et al. [6] have reported that female patients usually grow along the −2 SD growth curve in childhood and exhibit further downward growth shift with puberty, while male patients usually grow along by the −2 SD growth curve throughout the growth period. By contrast, Ross et al. [5] have documented that statural growth is irrelevant to age, sex, or pubertal status. Here, we report prepubertal and postpubertal statural growth in individuals with SHOX haploinsufficiency, and discuss the effects of gonadal estrogens on statural growth.

Materials and Methods

Patients

This study consisted of 31 Japanese patients with molecularly confirmed SHOX haploinsufficiency, including 15 previously reported patients [2, 6–8]. Twenty-one patients were familial cases from seven pedigrees, in which six patients with SHOX haploinsufficiency (a prepubertal boy, two prepubertal girls, and three postmenarchial females) and a patient with SHOX nullizygosity (an infantile boy) were identified as the probands because of short stature (<−2.0 SD), and 15 patients (four prepubertal girls, five adult males, and six adult females) were ascertained through familial studies for individuals with low-normal to short stature and/or mesomelic appearance. The remaining 10 patients (eight prepubertal girls and two postmenarchial females) were sporadic cases identified because of short stature (<−2.0 SD). Thus, the 31 patients were divided into two groups in terms of the ascertainment of SHOX haploinsufficiency: (1) group 1, 16 patients (the six probands of familial cases and the 10 sporadic cases) identified by the studies for short stature; and (2) group 2, 15 patients ascertained through familial studies.

All the patients had a normal karyotype and were free from co-incidental disorders for short stature such as endocrine diseases. SHOX haploinsufficiency was caused by R195X in two sporadic cases, R168W in three cases from one family, and pseudoautosomal submicroscopic deletions involving SHOX in the remaining 26 patients. Molecular studies of SHOX haploinsufficiency were performed under the approval of the Institutional Review Board Committee of National Research Institute for Child Health and Development.

Menarchial age was 12.1 ± 0.7 years in the 11 adult females (menarchial age in normal Japanese females: 12.25 ± 1.25 years) [9].

Growth assessment

Growth data were compared between childhood with no signs of pubertal development (5–8 years of age in both sexes) and adulthood with full pubertal development (>20 years of age in both sexes or postmenarchial late teens in females). The heights were evaluated by the longitudinal growth standards for the Japanese [10]. In patients receiving growth hormone and/or gonadotropin releasing hormone analog treatment, pretherapeutic clinical data only were analyzed. To allow for comparison between different ages and different sexes, the statural data were expressed as SD scores (SDSs).

The statistical significance of the mean was examined by the two-tailed Student’s t-test for two unpaired groups, after examining the normality by the χ² test and comparing the variances by the F-test, and by the two-tailed paired t-test for two paired groups. P<0.05 was considered significant.

Results

The height SDSs of the 31 patients at the diagnosis of SHOX haploinsufficiency are shown in Fig. 1. The mean height SDS was similar between patients identified in childhood and those identified in adulthood (−2.7 ± 0.8 [n = 15] vs. −2.4 ± 0.7 [n = 16], P = 0.36), and between males and females of group 2 identified in adulthood (−2.1 ± 0.3 [n = 5] vs. −2.3 ± 0.6 [n = 6], P = 0.38). However, it was significantly lower in group 1 than in group 2 both in childhood (−3.0 ± 0.6 [n =11] vs. −1.8 ± 0.5 [n = 4], P = 0.0051) and in adulthood (−3.0 ± 0.9 [n = 5] vs. −2.2 ± 0.5 [n = 11], P = 0.040).

The longitudinal height SDSs obtained in seven patients are shown in Fig. 2. Growth data were taken prospectively in two girls and retrospectively in five adult females. Statural growth invariably deteriorated in all the seven patients, with the significantly different mean height SDS between childhood and adulthood (−2.3 ± 0.5 vs. −2.9 ± 0.8, P = 0.0060).
Discussion

Growth analysis of the paired data in the seven patients has shown downward growth shift of ~0.6 SD between childhood and adulthood. This provides further support for the notion that gonadal estrogens exert a maturing effect on skeletal tissues vulnerable to premature growth plate fusion because of \textit{SHOX} haploinsufficiency, worsening skeletal lesion and resultant growth failure with puberty [2, 4]. Although auxological data such as arm span and leg length were not available in most of the 31 patients, the previous longitudinal study in a female with \textit{SHOX} haploinsufficiency [6], in conjunction with \textit{SHOX} expression in the long bones of the forearms and shanks as well as in the first and second pharyngeal arches of the human embryos [3], implies that growth deficiency during puberty is primarily due to deterioration of mesomelia.

By contrast, statural analysis at the diagnosis of \textit{SHOX} haploinsufficiency in the 31 patients has failed to reveal growth deficiency during puberty. In this regard, it is noteworthy that growth failure was more severe in group 1 than in group 2 in both childhood and adulthood. This would imply the presence of an ascertainment bias that patients with relatively severe...
growth failure are frequently identified in childhood by the studies for short stature whereas those with relatively mild short stature often remain undetected in childhood and are recognized in adulthood after downward growth shift during puberty by the familial studies. This notion would explain why the height SDSs were similar between childhood and adulthood in the 31 patients. Furthermore, this notion may also explain why the height SDSs were irrelevant to age, sex, or pubertal status in the study of Ross et al. [5], because they examined the height SDSs at the time of diagnosis of SHOX haploinsufficiency.

In addition, two matters are notable in the present study. First, the adult height SDSs were similar between males and females in group 2. Since females have a larger amount of gonadal estrogens and enter puberty earlier than males, this may argue against the deleterious effect of gonadal estrogens on the pubertal height gain. However, since familial studies were preferentially carried out for individuals with low-normal to short stature and/or mesomelic appearance predominantly manifested by female patients, it is possible that males with apparently normal phenotype remained unrecognized. Second, most patients in group 1 were females, even in childhood. Although the reason for such a distorted sex ratio is unknown, one possibility might be that serum estrogen levels are higher in girls than in boys from childhood [11].

In summary, the present study suggests that gonadal estrogens are disadvantageous to pubertal growth in SHOX haploinsufficiency, and that the growth disadvantage is recognizable by longitudinal rather than cross-sectional growth studies. Further longitudinal growth studies in a large number of non-biased individuals will permit a better characterization of pubertal growth in SHOX haploinsufficiency.

Acknowledgments

This work was supported in part by a Grant for Child Health and Development (14-C) from the Ministry of Health, Labor and Welfare, and by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture (15591150).

References