Increased Fructose 2,6-bisphosphate in Peripheral Blood Mononuclear Cells of Patients with Diabetes

TOSHIYA ATSUMI, HITOSHI CHIBA*, NARIIITO YOSHIOKA, RICHARD BUCALA** AND TAKAO KOIKE

Department of Medicine II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
*Department of Health Sciences, Hokkaido University School of Medicine, Sapporo 060-0812, Japan
**Department of Medicine and Pathology, School of Medicine, Yale University, New Haven, Connecticut, USA

Abstract. Fructose 2,6-bisphosphate (F2,6BP) is a powerful allosteric activator of 6-phosphofructo-1-kinase, which is the rate-limiting enzyme for glycolysis. Mitogenic stimulation of lymphocytes is related to an enhanced rate of glucose utilization and F2,6BP mediated activation of glycolysis. To determine the effect of hyperglycemia on intracellular glycolysis of lymphocytes, we measured intracellular F2,6BP content in peripheral blood mononuclear cells obtained from patients with diabetes and normal subjects. A total of 62 subjects participated in the present study. Venous blood samples were collected and peripheral blood mononuclear cells were separated by Ficoll gradients. Intracellular F2,6BP levels in peripheral blood mononuclear cells from normal control subjects were significantly lower than age-matched diabetic subjects. We observed a significant positive correlation between intracellular F2,6BP levels and long term glycemic control, as assessed by HbA1c. These data suggest that hyperglycemia increases intracellular F2,6BP in immune cells. These findings may help to clarify the impaired function in immune cells in patients with diabetes.

Key words: Glycolysis, Lymphocytes, Fructose 2,6-bisphosphate

(Endocrine Journal 54: 517–520, 2007)

IMMUNE cell activation requires an increase in glucose uptake and anaerobic glycolysis, which are induced by antigenic or mitogenic challenge and serve to meet the acute metabolic demands of the cell [1–5]. Enhanced glycolysis provides ATP for synthetic functions and kinase reactions, and pentose sugars for the synthesis of the nucleotide precursors necessary for proliferative responses.

Fructose 2,6-bisphosphate (F2,6BP) is a powerful allosteric activator of 6-phosphofructo-1-kinase (PFK-1), which is the rate-limiting enzyme for glycolysis [6–9]. High F2,6BP levels mediate enhanced glycolysis, and F2,6BP in turn is produced by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2). We recently cloned an inducible isoform of PFK-2, termed iPFK-2 (encoded by PFKFB3 gene), that is responsible for increased intracellular F2,6BP levels in activated immune cells, thereby prompting our interest in the regulation and effector action of F2,6BP [10]. Infections occur with increased frequency and severity in diabetes [11]. However, potential mechanisms of impairment in immune cell function of patients with diabetes have not been clarified.

In this study, we measured intracellular F2,6BP content in peripheral blood mononuclear cells (PBMCs) obtained from 49 patients with diabetes and 13 normal subjects to investigate the level of F2,6BP in immune cells. We observed a significant relationship between intracellular F2,6BP levels and long term glycemic control, as assessed by HbA1c.

Subjects and Methods

The diabetic patients were recruited from an outpatient endocrinology clinic at the Hokkaido University...

Received: November 29, 2006
Accepted: March 2, 2007
Correspondence to: Toshiya ATSUMI, M.D., Ph.D., Department of Medicine II, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
Hospital. Venous blood samples were collected from subjects after an overnight fast, and PBMCs were separated by Ficoll gradients. PBMCs were homogenized in 50 mM NaOH and incubated at 80°C for 10 min. After centrifugation, the supernatants were used to assay for F2,6BP by Van Schaftingen’s method [12]. Protein concentration was determined by Bio-Rad Reagent (Bio-Rad Laboratories Inc., Richmond, CA) according to the manufacture’s protocol. HbA1c was measured by high performance liquid chromatography. The study protocol was approved by the institutional review boards of the ethics committee in Hokkaido University Graduate School of Medicine, Japan. All subjects gave written informed consent before entering the study. Statistical analysis was performed with Dr. SPSS II software. The level of significance was accepted at P<0.05 as assessed with Spearman’s rank correlation.

Results

A total of 49 diabetic subjects with a mean ± SD age of 63.2 ± 12.4 years, 21 men and 28 women, participated in the present study. The clinical characteristics of the diabetic subjects are shown in Table 1. All participants had diabetes (six patients with type 1 diabetes and 43 patients with type 2 diabetes), but none had clinical symptoms for infection. All participants showed negative plasma CRP levels and were not taking any anti-inflammatory drugs. For the normal control subjects, non-diabetic healthy volunteers were recruited (mean ± SD age of 43.5 ± 6.5 years, n = 13).

Intracellular F2,6BP levels in PBMCs from normal control subjects were significantly lower than age-matched diabetic subjects (n = 17, 4.62 ± 1.66 vs. 6.54 ± 2.87 pmol/mg protein, P<0.04) (Fig. 1). The HbA1c level in each group was 4.83 ± 0.26 and 8.28 ± 1.44, respectively. The concentration of F2,6BP was positively correlated with HbA1c in patients with diabetes and normal subjects (r = 0.451, P<0.001) (Fig. 2).

Discussion

In the present study, we have demonstrated for the first time a significant positive association between F2,6BP level in PBMCs and HbA1c level. In diabetes, enhanced glycolysis in the heart, kidney, and other organs [15, 16] can lead to an increase in the production

Table 1. Characteristics and laboratory findings in patients with diabetes and normal subjects

<table>
<thead>
<tr>
<th></th>
<th>Patients with diabetes</th>
<th>Normal subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (Male/Female)</td>
<td>49 (21/28)</td>
<td>13 (8/5)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>63.2 ± 12.4</td>
<td>43.5 ± 6.5</td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td>15.9 ± 8.3</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.2 ± 4.1</td>
<td>22.4 ± 4.3</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.5 ± 1.2</td>
<td>4.8 ± 0.2</td>
</tr>
</tbody>
</table>

Values are the mean ± SD.
of diacylglycerol, which activates protein kinase C and alters downstream gene expression [17–20]. Hyperglycemia also leads to enhanced production of precursors of intracellular advanced glycation endproducts [21]. These altered metabolic products and oxidative stress play a role in the development of diabetic complications [21]. Diabetes is a risk factor for bacteremia in patients with pneumococcal pneumonia and is associated with increased mortality [22–24]. Infections occur with an increased severity in patients with diabetes [25]. Mitogenic stimulation of lymphocytes is related to an enhanced rate of glucose utilization and F2,6BP mediated activation of glycolysis [26]. In the previous report, elevated F2,6BP levels in thymus lymphocytes have been shown in streptozotocin (STZ) induced diabetic rats [27]. Altered functions of polymorphonuclear neutrophils in STZ-induced diabetic rats have been shown in a recent report [28]. These findings suggest the association between accelerated glycolysis due to hyperglycemia and alteration of the immune system during the diabetic state. HbA1c reflects the mean blood glucose levels during the past 1 to 2 months. We investigated the relationship between F2,6BP levels and plasma glucose levels. However, significant association was not observed (data not shown). Further studies are required to better understand the mechanism of regulation of F2,6BP levels in PBMCs.

Glycolysis is ultimately inhibited by several glycolytic metabolites such as glyceraldehyde 3-phosphate, ATP, phosphoenolpyruvate [10, 29] and citrate. Accelerated glycolysis may induce the accumulation of these metabolites, leading to a persistently unresponsive state for leukocytes in the diabetic milieu. It has been shown that neutrophils from diabetic rats are already activated at basal level and cannot show their normal response toward the stimulation [28]. Therefore, we hypothesize that activation of glycolysis by F2,6BP in PBMCs causes the accumulation of glycolytic metabolites, and inhibits the activation of immune cells.

In conclusion, this is the first report for a positive correlation between F2,6BP levels in PBMCs and HbA1c. Further investigation of the association between increased F2,6BP level in PBMCs and alteration of immune system in patients with diabetes may be a useful means to clarify the impaired function in immune cells in patients with diabetes.

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Technology, Sports and Culture of Japan (to T. Atsumi) and NIH grant AI42310 (to R. Bucala). We thank Hiroko Ujiie for expert technical assistance.

References

Perioperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. *Endoc J* 49: 531–537.