Up-regulation of Muscle Uncoupling Protein 3 Gene Expression by Calcium Channel Blocker, Benidipine Hydrochloride in Rats

NAOKI SAKANE, KAZUHIKO KOTANI, CHIZUKO HIOKI*, TOSHIHIDE YOSHIDA* AND TEROU KAWADA**

Department of Preventive Medicine, Clinical Research Institute, Center for Endocrine and Metabolic Disease, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
*Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
**Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan

Abstract. To examine whether benidipine hydrochloride, one of the calcium channel blockers, up-regulate uncoupling protein 3 (UCP3) expression in two skeletal muscles (gastrocnemius and soleus) in rats. Wistar rats were treated orally with benidipine hydrochloride at 4 mg/kg for 7 days. Blood pressure was measured after 4 days. At the end of experiments, the rats were weighed, and brown adipose tissue (BAT) and skeletal muscles (gastrocnemius and soleus muscles) were removed. The mRNA levels of uncoupling protein 1 (UCP1) and UCP3 were measured using the real-time quantitative reverse transcription-polymerase chain reaction method. Benidipine reduced body weight and also had a hypotensive effect. In rats treated with benidipine, UCP1 mRNA levels were significantly increased 1.4-fold in BAT, and UCP3 mRNA levels in BAT and gastrocnemius muscle were significantly increased 1.7 and 3.0-fold, respectively, compared with the control rats. There was no difference in UCP3 mRNA levels in soleus muscle between the two groups. We concluded that benidipine up-regulates not only UCP1 gene expression in BAT but also UCP3 gene expression in BAT and gastrocnemius muscle, which may contribute to thermogenesis in rats.

Key words: Obesity, Benidipine, Uncoupling protein, Brown adipose tissue, Skeletal muscle

CALCIUM antagonists are generally thought to exert their therapeutic action by inhibiting L-type calcium channels in the heart and especially in the peripheral vascular system [1]. Benidipine hydrochloride is a dihydropyridine calcium antagonist used in treating hypertension [2, 3]. Its long-term administration to rats and dogs has an inhibitory effect on weight gain; body weight rapidly returns to the control value after withdrawal of the drug [4, 5]. In hypertensive patients with mild obesity, benidipine induced a slight but significant body weight loss [6]. The mechanism by which this drug produces weight loss is unknown. We recently revealed that benidipine activated brown adipose tissue (BAT) to induce body weight loss in monosodium-L-glutamate (MSG)-obese mice [7], in which the activity of BAT is diminished.

Uncoupling proteins (UCPs) are thought to be a family of mitochondrial H+ fatty acid transporters that are expressed in a tissue specific manner. UCP1, a classic UCP, is present exclusively in BAT [8]. UCP2 is expressed in heart, skeletal muscle and a number of other tissues [9], and UCP3 expression is largely confined to skeletal muscle and heart, with small amounts being present in BAT [10]. In 1997, UCP2 was found to be highly expressed not only in rodents, but also in hu-
mans, and UCP3 was also highly expressed in both rodents and humans, mainly in skeletal muscle [11]. However, the exact physiologic roles of UCP2 and UCP3 are not known and are under intense investigation. Moreover, it is unclear whether benidipine up-regulates UCP3 gene expression in skeletal muscle. Therefore, in this study, we tested the hypothesis that benidipine up-regulates UCP3 gene expression in skeletal muscle of rats.

In addition, this study using benidipine also examined the expression of UCP3 in the same two skeletal muscles that differ widely in their relative proportions of slow-oxidative (SO) fibers, fast-glycolytic (FG) fibers and fast-oxidative-glycolytic (FOG) fibers, namely, the soleus, consisting predominantly (84%) of SO fibers and a small proportion (16%) of FG fibers, and the gastrocnemius, containing very few (4%) SO fibers and a high proportion (58% and 38%) of FG and FOG fibers [12].

Materials and Methods

Male 18 weeks-old Wistar rats (Charles River Japan Inc., Tokyo, Japan) or male 17 weeks-old spontaneously hypertensive rats (SHRs, Hoshino Experimental Animals, Saitama, Japan) were housed in plastic cages at 22 ± 2°C with a 12 h light-dark cycle and given free access to laboratory chow (CE-2; Clea Japan) and tap water. The rats were divided into two groups. One group was given benidipine (Kyowa Hakko Kogyo Co. Ltd., Tokyo) via gastric tube at a daily dose of 4 mg/kg dissolved in 0.5% methylcellulose for 7 days. The dose of benidipine was selected based on previous studies on anti-hypertensive and anti-obesity effects (decreases in body weight and visceral fat accumulation) [3, 7, 13]. The other group was given distilled water dissolved in 0.5% methylcellulose. After 4 days, blood pressure (BP) was measured 4 h after the drug treatment in all conscious rats using the indirect tail-cuff method on a preheated 37°C plate. At the end of 7 days, the body weight of the rats was measured. Moreover, skeletal muscles (gastrocnemius and soleus) of Wistar rats were removed rapidly, weighed and frozen in liquid nitrogen for real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis [14, 15]. Total RNA was extracted from 0.1–0.5 g of tissue using the TRIZol reagent (Gibco BRL, Gaithersburg, MD, USA), according to the manufacturer’s instructions. Total RNA (2 µg) was denatured at 80°C for 5 min, cooled immediately and mixed with reverse transcriptase, 50 pmol poly (dT) primer and 20 nmol dNTPs in a total volume of 20 µL at 37°C for 1 h. A real-time quantitative PCR was performed in a fluorescence temperature cycler (LightCyclerTM, Roche Diagnostics GmbH Manheim, Germany), with 6 µL of reaction mixture containing 3 mMol/L of MgCl₂, 50 mMol/L TrisHCL (pH 8.3), 500 ng/µL of bovine serum albumin, 200 µMol/L of each dNTP, a 1 : 30,000 dilution of SYBR Green, 1.5 µMol/L of each primer, 0.05 U/µL of Taq DNA polymerase, 11 ng/µL of TaqStartTM antibody (Clontech laboratories, Palo Alto, CA, USA) and template. Amplification was conducted with a three-cycle procedure (denaturing, 95°C, 1 sec, ramp rate 20°C/sec; annealing 60°C, 10 sec, ramp rate 20°C; and extension 72°C, 26 sec, ramp rate 2°C/sec) for 40 cycles. The fluorescence signal was plotted against the cycle number for all samples and external standards. Primers for UCP1 cDNA were: forward 5'-GTGAAGGTCAGAATGCAAGC-3' (position 409–428) and reverse 5'-AGGGCCCCCTTCATGAGTGGTC-3' (position 586–605), chosen according to the rat UCP1 cDNA sequence (RNUCPG.PE1, EMBL). Primers for UCP2 cDNA were: forward 5'-CAAGACCCCATGCGAGAG-3' (position 788–807) and reverse 5'-CATGGTAAGGGCACAGTGCA-3' (position 1061–1080), chosen according to the rat UCP2 cDNA sequence (U69135, Genbank). Primers for UCP3 cDNA were: forward 5'-ATGCATGCCTACAGAACCAT-3' (position 657–676) and reverse 5'-CTGGGCCACCATCCTCAAGC-3' (position 949–968), chosen according to the rat UCP3 cDNA sequence (U92069, Genbank) [15, 16]. Primers for β-actin cDNA were: forward 5'-ATGAGTCACCAGAGAGAC-3' and reverse 5'-AAGGAGCTCAGCAGTGGCA-3'. Some amplification products produced in the LightCycler were checked by electrophoresis on 1.5% ethidium bromide-stained agarose gels. The estimated size of the amplified fragments matched the calculated size for UCP1 (197 bp), UCP2 (293 bp), UCP3 (312 bp) and β-actin (584 bp) in all cases. UCP mRNA levels are expressed relative to controls. The Animal care and Use committee of Kyoto Prefectural University of Medicine approved the animal care and experimental procedures.

All calculations were performed using the SPSS/WIN program version 11.0 (SPSS, Chicago, IL). Values are expressed as mean ± SE. A two-tailed unpaired
A t test was used to analyze the difference between two groups. Results were considered significantly different at a P value of <0.05.

Results

Control Wistar rats without benidipine administration showed approximately 10 gram increase in body weight during the experimental periods, whereas benidipine-administered rats did not show any increase in body weight during the same periods (Table 1). We also tested the effect of benidipine on body weight in SHR. Control SHRs without benidipine administration showed a small increase in the body weight, but the benidipine-administered SHRs exhibited a decrease in body weight (Table 2). Food intakes were not different among the groups in two studies and mean food intake was 25 g/day/rat. The administration of benidipine decreased the arterial blood pressure in both Wistar rats and SHRs, confirming that benidipine at this time had significant effects on the cardiovascular system of the rats under the present experimental condition. The effects of benidipine on body weight and blood pressure were stronger in SHRs compared with Wistar rats (Table 1, 2).

In Wistar rats treated with benidipine, UCP1 mRNA levels were significantly increased by 1.4-fold in BAT compared with controls. In rats treated with benidipine (4 mg/kg), UCP3 mRNA levels were also significantly increased by 1.7 and 3.0-fold in BAT and gastrocnemius muscle, respectively, compared with the control rats (Fig. 1). There were no differences in UCP2 mRNA levels in BAT and UCP3 mRNA levels in soleus muscle between the groups.

Discussion

It is probable that the anti-obesity effects of benidipine reported in several animal models of genetically obese are mediated via an indirect stimulation of BAT.
In this study, we clarified the mechanisms of anti-obesity effects of benidipine.

First, the present findings show that benidipine up-regulates UCP1 gene expression in BAT and reduces body weight in rats. These findings are consistent with previous studies [7, 15, 17], in which the activity of BAT was increased by benidipine. Using guanosine-5' diphosphate showed that benidipine activated BAT function in obese MSG mice [7]. Kajita et al. reported benidipine acutely stimulates blood flow to BAT in rats [18]. Karasawa et al. reported that benidipine did not significantly affect plasma NE concentrations, although nifedipine and amlodipine significantly increased plasma NE concentrations [19]. Zhao et al. using isolated brown fat cells from rats reported that benidipine itself has no thermogenic effect, and that the thermogenic response in-vivo is probably secondary to a release of NE from sympathetic nerves, here most likely directly from nerves in the BAT [17]. On the other hand, BAT is not only a target for pharmacotherapy of obesity and insulin resistance but also an endocrine tissue with leptin secretion and high insulin sensitivity. In fact, insulin and the adrenergic system is important in the regulation of energy homeostasis such as UCP1 expression in BAT [20], and benidipine is reported to improve insulin resistance [21, 22]. The mechanisms by which benidipine up-regulates UCP1 are thus unknown, but this is probably due to the improvement of insulin resistance not a calcium channel blocking effect.

Second, the present findings show that benidipine up-regulates UCP3 gene expression in BAT and gastrocnemius muscle. The underlying mechanism is unclear. Increases of 10-fold or more in UCP3 mRNA levels were observed upon fasting and diabetes, as well as the administration of β3-agonist or T3 [23]. In many of these instances, the stimulation of UCP3 gene expression seemed to be mediated by an increase in circulating and/or intracellular fatty acid levels [24]. Moreover, from the preliminary study, benidipine increased UCP2 mRNA levels in white adipose tissue of Wistar rats. However, little is known about the association between benidipine and fatty acid levels. Further examination is needed to clarify these points.

Interestingly, UCP3 gene expression in soleus muscle did not change significantly, although that in gastrocnemius muscle did. The differential mRNA expression patterns of the two skeletal muscles are consistent with the heterogeneity in their glycolytic and oxidative enzymes activities and hence in their capacity to shift between lipids and glucose as fuel substrates. Soleus muscle is an oxidative type muscle with higher dependency on lipids than the gastrocnemius, hence it has a lower capacity to shift between lipids and glucose as fuel substrates [25]. Samec et al. reported that the changes of UCPs mRNA expressions in gastrocnemius muscle were greater than those in soleus muscle [25]. We reported that β3-adrenergic agonist induces a functionally active uncoupling protein in fat and slow-twitch muscle fibers in gastrocnemius muscle of obese MSG mice [26]. Because the role of muscle UCP3 as a thermogenic and/or thermoregulatory protein remains to be established, further examination is needed.

In this study, we clarified the hypothesis that benidipine up-regulates UCP3 gene expression in skeletal muscle of rats. Further studies are needed to clarify the mechanism of the anti-obesity effect and UCPs up-regulation of benidipine. Moreover, we must prove the physiological activities of UCPs in each tissue and the differences of UCPs mRNA expression between Wistar rats and SHRs.

In conclusion, benidipine up-regulates not only UCP1 gene expression in BAT but also UCP3 in BAT and gastrocnemius muscle, which may contribute to a reduction in weight, possibly by activating thermogenesis in skeletal muscle through UCP3. These findings suggest that benidipine may be useful in treating hypertensive patients with obesity.

References

