Endocrine Journal
Online ISSN : 1348-4540
Print ISSN : 0918-8959
ISSN-L : 0918-8959
ORIGINALS
Ghrelin suppresses tunicamycin- or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells
Hyunju ChungHo-Yeon ChungChong Woo BaeChong-Jin KimSeungjoon Park
Author information
JOURNAL FREE ACCESS

2011 Volume 58 Issue 5 Pages 409-420

Details
Abstract

Ghrelin functions as a neuroprotective agent and rescues neurons from various insults. However, the molecular mechanisms underlying ghrelin neuroprotection remains to be elucidated. An accumulation of unfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and then induces ER stress-mediated cell death. Here, we report that acylated ghrelin inhibited tunicamycin- or thapsigargin-triggered ER stress-induced apoptotic cell death in primary rat cortical neurons. An analysis using a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), LY294002, showed that ghrelin prevented apoptosis via the activation of PI3K signaling pathway. Ghrelin suppressed tunicamycin- or thapsigargin-induced upregulation and nuclear translocation of C/EBP homologous protein (CHOP). Ghrelin also inhibited tunicamycin or thapsigargin induction of PRK-like ER kinase (PERK), eukaryotic translation initiation factor-2α (eIF2α) and activating transcription factor (ATF) 4. Exposure of cells to tunicamycin or thapsigargin resulted in nuclear translocation of forkhead box protein O1 (Foxo1), which was reduced by pretreatment with ghrelin. The protective effect of ghrelin was accompanied by an increased phosphorylation of Akt and glycogen synthase kinase (GSK)-3β. Furthermore, ghrelin phosphorylated and inactivated pro-apoptotic BAD and Foxo1. In addition, phospho-Akt was translocated to the nucleus in response to ghrelin and PI3K inhibition by LY294002 prevented ghrelin-induced effect on phospho-Akt localization. Our study suggests that suppression of CHOP activation via the inhibition of PERK/eIF2α/ATF4 pathway and prevention of Foxo1 activation and nuclear translocation may contribute to ghrelin-mediated neuroprotection during ER stress responses. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β, BAD and Foxo1 may be associated with the anti-apoptotic effect of ghrelin.

Content from these authors
© The Japan Endocrine Society
Previous article Next article
feedback
Top