Liraglutide prevents diabetes progression in prediabetic OLETF rats

Nanjing Guo¹, 2*, Jia Sun¹*, Hong Chen¹, Hua Zhang¹, Zhen Zhang¹ and Dehong Cai¹

1) Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
2) Department of Cadre Sanitarian, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China

Abstract. One of the human GLP-1 analogues, liraglutide has been approved as adjuvant therapy to oral medication in T2DM. It was also shown to prevent diabetes in obese subjects and rats. However, it is unknown whether liraglutide can effectively mitigate the effects of prediabetes. We therefore investigate this by treating 12-week-old Otsuka-Long-Evans-Tokushima fatty (OLETF) rats with liraglutide 50, 100, and 200 μg/kg respectively twice a day for 12 weeks. Eight Long-Evans-Tokushima-Otsuka (LETO) rats with saline injection served as normal controls. Body weight, food intake, lipid profiles, inflammatory markers (fibrinogen, Hs-CRP, IL-6, TNFα, and PAI-1), glycemic metabolism and insulin sensitivity, and apoptotic factors (Bcl-2 and Bax) expression were monitored. We found that 12-week-old OLETF rats had significantly increased body weight, food intake, serum levels of lipid profiles, inflammatory markers, and insulin compared to LETO rats. FPG level was significantly increased but still lower than 7mmol/L without impaired glucose tolerance (IGT). After 12 weeks, vehicle-treated OLETF rats had further deterioration in IFG, IGT, insulin resistance, lipid profiles, and inflammatory state. Pancreatic islets were hypertrophic with distorted structure, scarring, and inflammatory cell infiltration. However, in the three liraglutide-treated groups, IFG, IGT, the increased lipid profiles and inflammatory markers were reversed. Insulin resistance was similar to the level before the treatment. Moreover, liraglutide restored the islet structure, up-regulated Bcl-2 expression and down-regulated Bax expression. It indicated that liraglutide could suppress diabetes onset in OLETF rats with prediabetes, probably by preserving β cell function via regulating apoptotic factors as well as ameliorating lipid metabolism and inflammatory reactions.

Key words: Prediabetic, Otsuka-Long-Evans-Tokushima fatty (OLETF) rat, Inflammatory markers, Pancreatic transcription factors, Apoptotic factors

©The Japan Endocrine Society
Glucagon-like peptide 1 (GLP-1) is one of two insulinotropic hormones secreted in response to oral ingestion of glucose, indicating a promising potential therapy for diabetes. However, native GLP-1 has an exceptionally short half-life of less than 2 min following administration in vivo due to rapid degradation by the enzyme dipeptidyl peptidase IV (DPP-IV) and rapid renal elimination [13]. Therapeutic administration of GLP-1 is thus impractical. As a result, efforts have been made for the production of GLP-1 analogues that are resistant to degradation by DPP-IV. Currently, there are two human GLP-1 analogues available as adjuvant therapy to oral medication in T2DM. One is exenatide, a short-acting human GLP-1 analogue and another is liraglutide, a long-acting human GLP-1 analogue. They can improve postprandial blood glucose by stimulating glucose dependent insulin secretion, thereby reducing the incidence of hypoglycaemia following antidiabetes treatment [14]. Moreover, they can also decrease gastric emptying and suppress appetite, thereby promoting weight loss, improve lipid profiles, and decrease systolic blood pressure [14-16]. Taking together all these benefits, human GLP-1 analogues could be excellent candidates for preventing diabetes in patients with prediabetes that is usually concomitant with obesity, hypertension, and hyperlipidemia. Rosenstock et al. reported that a 24-week treatment with exenatide resulted in significant weight loss and glucose tolerance improvement in patients with IFG or IGT [17]. Can liraglutide effectively help to mitigate the effects of prediabetes that exist in many patients, thereby preventing diabetes onset at a later stage? To date, there are only two clinical studies detailing its benefits in overweight subjects without prediabetes. Astrup et al. conducted a randomised, double-blind, placebo-controlled study on 564 overweight subjects and showed that 20-week treatment with one of four doses of liraglutide significantly reduced body weight, blood pressure and the prevalence of prediabetes compared with placebo or orlistat [18], and these benefits were sustained with a 2-year treatment [19]. The transition from obesity to prediabetes is a long-term progression. Further studies in prediabetic status are necessary. Recently, Cummings et al. [20] reported that liraglutide treatment delayed diabetes onset in prediabetic UCD-T2DM rats by reducing energy intake and body weight, and by improving insulin sensitivity, improving lipid profiles, and maintaining islet morphology. However, they started to treat animals from 8 weeks of age with normal FPG and non-FPG levels, which is far earlier than the prediabetic stage. Whether liraglutide can reverse prediabetes and its associated risk factors such as inflammatory status and hyperlipidemia still remains obscured. We therefore conducted the present study to investigate the effect and underlying mechanisms of liraglutide on prediabetes and its related pathological conditions in OLETF rats.

Materials and Methods

1. Animals and composition of experimental groups

All animal experimental procedures were carried out in accordance with the principles of laboratory animal care and approved by the ethical committee in the Southern Medical University (Guangzhou, China). Four-week-old male OLETF rats and age-matched non-diabetic control male LETO rats were generously provided by the Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd. (Tokushima, Japan). All rats were kept individually in polycarbonate cages with free access to standard rodent chow and tap water in
Liraglutide reverses prediabetes

There is not any standard available for diagnosing diabetes and prediabetes in the rat model. Therefore, we follow others [20, 24] to use WHO criteria to diagnose diabetes and prediabetes. Diabetes is defined as a FPG > 7.0 mmol/L or a 2 h PG > 11.1 mmol/L during an OGTT. IFG is defined by a FPG > 5.6 mmol/L but < 7.0 mmol/L. IGT is defined by a FPG < 7.0 mmol/L with a 2 h PG during an OGTT > 7.8 mmol/L and < 11.1 mmol/L. Pre-diabetes is isolated IFG or isolated IGT or combined. Therefore, we used the same diagnosis criteria for the present study.

At the end of 12 weeks of treatment, all rats were euthanized by administration of pentobarbital (50 mg/kg). The pancreatic tissues were rapidly removed, fixed immediately in 4% paraformaldehyde solution for 24 hours and then paraffin-embedded, thin-sectioned (3-5 μm) for routine histopathological analysis and for immunohistochemical analysis.

3. Histopathology and immunohistochemistry

Haematoxylin & Eosin stain was performed following standard protocols and then morphological changes were observed under a light microscope (BX41TF, OLYMPUS). The pancreatic islets were sampled from all pancreatic regions to avoid bias in quantification and at least 25 islets were analyzed per mouse. All islets were circled to calculate the size.

Immunohistochemical assay was performed to detect the protein expression of antiapoptotic Bcl-2 and proapoptotic Bax in pancreatic islets. Briefly, paraffin-sections were rehydrated in a descending xylene/ethanol series and endogenous peroxidase activity was quenched with methanol containing 3 % hydrogen peroxide for 10 min at room temperature. To avoid non-specific reactions with the background, the sections were incubated with normal goat serum at 37°C for 20 minutes prior to incubation with specific antibodies against Bcl-2, and Bax (Santa Cruz Biotechnology, USA) at 4 °C overnight in a humidified chamber. After rinsing in PBS buffer (0.01M, pH 7.4) three times, they were incubated with normal goat serum at 37°C for 20 minutes prior to incubation with specific antibodies against Bcl-2, and Bax (Santa Cruz Biotechnology, USA) at 4 °C overnight in a humidified chamber. After rinsing in PBS buffer and finally incubated with DAB (3,3'-diaminobenzidine tetrahydrochloride) containing 0.01% H2O2 in Tris-HCl buffer (0.05 M, pH 7.6), dehydrated, and mounted. After staining, the sections were observed under a light microscope. To quantify staining for BCL-2 and Bax protein, integrated optical density (IOD) was calculated.
as the product of staining area and intensity and presented as IOD/µm².

4. Statistical analysis

SPSS 16.0 software was used for statistical analysis. Data throughout were stated as means ± SEM unless otherwise specified. General effects were tested using one way ANOVA followed by Bonferroni or Dunnett’s test for individual comparisons of means (because 3 rats died accidentally, 2 in the liraglutide 100 µg/kg group and 1 in the liraglutide 200 µg/kg group before the end of experiment). Differences between measurements before and after treatment were analysed by use of Wilcoxon signed rank tests. A two-tailed Pearson test was performed for correlation analysis between the variables. p < 0.05 was considered statistically significant.

Results

1. The effect of liraglutide on food intake and body weight

Food intake in OLETF rats was significantly more than that of LETO rats before liraglutide treatment (p <0.0001). It was markedly suppressed by liraglutide treatment in the first week (all p<0.05) in a dose-independent manner, and then gradually increased to a similar level seen in vehicle-treated OLETF rats, which was then maintained at the same level throughout the remainder of the experimental period. After 12-week treatment, the amounts of food intake in the three liraglutide groups were similar (50 µg/kg group, 34.73 ± 0.49 g/day; 100 µg/kg group, 32.59 ± 0.57 g/day; 200 µg/kg group, 33.17 ± 0.53 g/day) and significantly more than that of LETO rats (25.00 ± 0.41 g/day) (all p<0.0001). They were slightly reduced but not statistically significant from that of vehicle-treated OLETF rats (37.41 ± 0.49 g/day) (all p =NS) (Fig. 1A).

Similarly to food intake, body weight in OLETF rats was significantly greater than that of LETO rats before treatment (416.8±5.8g vs. 325.8±5.6g, p<0.0001), which was significantly reduced with liraglutide treatment in a dose-independent manner within the first week compared with that of vehicle-treated OLETF rats (all p<0.05). This then gradually increased from the second week parallel to vehicle-treated animals and normal controls, which were significantly greater than LETO rats (all p=0.01) but still less than that of vehicle-treated OLETF rats (all p<0.05) despite similar levels of food intake (Fig. 1B). These results suggested that liraglutide only had an acute effect on food intake but its beneficial effect on weight loss was sustained and independent of food intake.

2. The effect of liraglutide on glycemic metabolism and insulin secretion and sensitivity

As shown in Fig. 2, FPG levels in vehicle-treated OLETF rats were significantly higher than in LETO rats (p<0.05) but only reached diabetic levels at the age of 24 weeks. Similarly, 2-hour postprandial blood glucose level (2h-PG) was normal until the age of 24 weeks, suggesting that 12 weeks old OLETF rats had IFG but not IGT. In addition, FPG was independent of food intake and bodyweight gain in vehicle-treated OLETF rats (p=NS) (Fig. 3) but 2h-PG was positively correlated to bodyweight gain (R=0.762, p=0.028). After one week of treatment, the elevation in FPG, 2h-PG and the glucose area under the curve (AUC 0-120 min) was significantly restrained by liraglutide in a dose-independent manner (all p<0.05 compared with that of vehicle-treated OLETF rats) and maintained at the same level as LETO rats throughout the rest of the experimental period.

Before treatment, 12-week old OLETF rats had significantly increased FINS, FIN 30min, and HOMA-IR levels and decreased ISIx1000, HOMA-β and ΔIns30/ΔGlu30 levels compared with LETO rats (all p<0.05), suggesting insulin resistance and impaired beta cell function. After 12-week treatment, vehicle-treated OLETF rats had further increased FINS and HOMA-IR levels and decreased ISIx1000, HOMA-β and ΔIns30/ΔGlu30 levels (all p<0.05). The above abnormalities were ameliorated by liraglutide treatment (Table 1). Although FINS was maintained at a similar level before treatment, HOMA-β and ΔIns30/ΔGlu30 levels were significantly improved with liraglutide 200µg/kg twice daily (all p<0.05).

By the end of the 12-week intervention period, 7 of 8 (87.5%) vehicle-treated OLETF rats progressed to diabetes characterized by significantly increased FPG and 2h-PG levels, insulin resistance and impaired beta cell function. However, FPG levels were reversed to normal in 9 of 21 (42.9%) liraglutide-treated OLETF rats whilst none of the liraglutide-treated OLETF rats progressed to diabetes (p<0.0001 compared with vehicle-treated animals).

3. The effect of liraglutide on lipid profiles and inflammatory state

Compared with LETO rats, serum level of TC was significantly increased in OLETF rats from the age of
Liraglutide reverses prediabetes

12 weeks to 24 weeks (all \(p<0.05 \)). Serum level of TG was also significantly increased at the age of 24 weeks (\(p<0.05 \)). After 12-week treatment with liraglutide, serum level of TC but not TG was significantly reduced (\(p<0.05 \) compared with that before treatment). There was no difference in terms of HDL and LDL between groups or before and after liraglutide treatment (Table 2).

The changes in inflammatory markers are shown in Table 3. The serum levels of fibrinogen, Hs-CRP, IL-6, TNF-\(\alpha \) and PAI-1 were significantly higher in OLETF rats compared with LETO rats at the age of 12 weeks (all \(p<0.05 \)). PAI-1 and fibrinogen levels were further increased in vehicle-treated OLETF rats at the age of 24 weeks (all \(p<0.05 \)). After 12 weeks of treatment, IL-6 and TNF-\(\alpha \) levels were significantly reduced by all doses of liraglutide, while Hs-CRP level was only reduced by liraglutide 200 \(\mu \)g/kg and PAI-1 level by liraglutide 50 \(\mu \)g/kg (all \(p<0.05 \) compared with the levels before treatment).

Moreover, a positive correlation was found between the bodyweight gain and serum level of Hs-CRP (\(R=0.714, p=0.047 \)), and between the serum level of TG and PAI-1 (\(R=0.881, p=0.004 \)) in 24 weeks old vehicle-treated OLETF rats. Such relationships did not appear in the liraglutide-treated animals.

4. The effect of liraglutide on pancreas morphology

Of the three groups of liraglutide-treated rats, the histology and immunohistochemistry studies were only performed in the liraglutide 100\(\mu \)g/kg group because the dose of liraglutide 100\(\mu \)g/kg twice daily in rat can be converted to human equivalent dose of 0.032mg/kg (1.92mg/day assuming 60kg human) according to FDA’s guidance [25], which is similar to the dose com-
Fig. 2 The effect of liraglutide on fasting plasma glucose (FPG) and glucose tolerance. Effect of liraglutide on fasting plasma glucose (A), 2h postprandial glucose (B) and the area under the plasma glucose concentration-time curve (C) during the OGTT test. Values are means ± SEM of 6-8 rats. * p<0.05 LETO vs. OLETF saline; # p<0.001 LETO vs. OLETF saline; ¶ p<0.0001 LETO vs. OLETF saline; † p<0.05 OLETF saline group vs. liraglutide 50μg/kg; ‡ p<0.05 OLETF saline group vs. liraglutide 100μg/kg; § OLETF saline group vs. liraglutide 200μg/kg; # p<0.001 OLETF saline group vs. each liraglutide-treated group.
Fig. 3 The relationship between body weight gain and fasting plasma glucose (FPG) FPG remained at similar level whilst body weight gain was different in both LETO and OLETF rats.

Table 1 Insulin secretion, sensitivity and beta cell function after 12-weeks intervention

<table>
<thead>
<tr>
<th></th>
<th>LETO rats</th>
<th>Saline (N=8)</th>
<th>IGT-OLETF rats</th>
<th>50 μg/kg (N=8)</th>
<th>100 μg/kg (N=6)</th>
<th>200 μg/kg (N=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINS (μIU/mL)</td>
<td>Before therapy</td>
<td>27.21±0.36</td>
<td>37.49±0.78*</td>
<td>37.76±1.08*</td>
<td>37.32±1.25*</td>
<td>37.50±1.21*</td>
</tr>
<tr>
<td></td>
<td>After therapy</td>
<td>27.46±0.60</td>
<td>51.03±1.12*</td>
<td>39.86±0.94*#</td>
<td>38.19±1.00*#</td>
<td>37.03±1.21*#</td>
</tr>
<tr>
<td>INS 30min (μIU/mL)</td>
<td>Before therapy</td>
<td>78.84±1.10</td>
<td>94.22±1.25*</td>
<td>93.42±1.81*</td>
<td>92.91±2.60*</td>
<td>93.08±2.60*</td>
</tr>
<tr>
<td></td>
<td>After therapy</td>
<td>73.10±1.48</td>
<td>99.51±2.18*</td>
<td>119.57±2.49*</td>
<td>122.20±2.54*</td>
<td>125.91±3.75*</td>
</tr>
<tr>
<td>ISI×1000</td>
<td>Before therapy</td>
<td>7.06±0.18</td>
<td>4.12±0.12*</td>
<td>4.04±0.08*</td>
<td>4.12±0.12*</td>
<td>4.07±0.12*</td>
</tr>
<tr>
<td></td>
<td>After therapy</td>
<td>6.29±0.60</td>
<td>2.37±0.09*</td>
<td>4.06±0.11*#</td>
<td>4.34±0.11*#</td>
<td>4.73±0.20#</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Before therapy</td>
<td>6.32±0.17</td>
<td>10.83±0.31*</td>
<td>11.03±0.21*</td>
<td>10.83±0.33*</td>
<td>10.97±0.34*</td>
</tr>
<tr>
<td></td>
<td>After therapy</td>
<td>7.28±0.48</td>
<td>19.55±0.87*</td>
<td>11.27±0.36*#</td>
<td>10.54±0.28*</td>
<td>10.40±0.48#</td>
</tr>
<tr>
<td>HOMA-β</td>
<td>Before therapy</td>
<td>323.46±20.63</td>
<td>251.92±9.82*</td>
<td>248.03±14.43*</td>
<td>247.99±14.60*</td>
<td>247.41±14.87*</td>
</tr>
<tr>
<td></td>
<td>After therapy</td>
<td>331.16±3.19</td>
<td>205.75±4.20*</td>
<td>290.99±12.79#</td>
<td>288.62±12.23#</td>
<td>294.41±14.24#</td>
</tr>
<tr>
<td>ΔIns30/ΔGlu30</td>
<td>Before therapy</td>
<td>11.23±0.85</td>
<td>5.21±0.40*</td>
<td>5.48±0.30*</td>
<td>5.08±0.29*</td>
<td>5.21±0.20*</td>
</tr>
<tr>
<td></td>
<td>After therapy</td>
<td>11.99±0.31</td>
<td>3.85±0.19*</td>
<td>9.00±0.35#</td>
<td>8.90±0.37*</td>
<td>9.55±0.25#</td>
</tr>
</tbody>
</table>

Data are means ± SEM, unless otherwise noted. FINS, fasting serum insulin; INS 30min, serum insulin 30min after glucose challenge; ISI, insulin sensitivity index; HOMA-IR, homeostasis model of insulin resistance; HOMA-β, homeostasis model assessment for β-cell function; ΔIns30/ΔGlu30, the ratio of the change in insulin to glucose response over the first 30 min of the OGTT; * p<0.05 compared with the LETO-saline group; # p<0.05 compared with the IGT-OLETF saline group; NS, not statistically significant.
Table 2 The changes of lipid profiles with liraglutide treatment (means ± SEM)

<table>
<thead>
<tr>
<th></th>
<th>LETO rats</th>
<th></th>
<th>IGT - OLETF rats</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Saline (N=8)</td>
<td>Saline (N=8)</td>
<td>50 μg/kg (N=8)</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>2.59±0.05</td>
<td>3.01±0.05*</td>
<td>2.84±0.04</td>
<td>3.05±0.12*</td>
</tr>
<tr>
<td>After therapy</td>
<td>2.02±0.07</td>
<td>2.56±0.08*</td>
<td>2.21±0.02</td>
<td>2.24±0.05</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=0.039</td>
<td>p=0.001</td>
<td>p=0.002</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>0.40±0.01</td>
<td>0.64±0.06</td>
<td>0.55±0.04</td>
<td>0.70±0.10</td>
</tr>
<tr>
<td>After therapy</td>
<td>0.36±0.04</td>
<td>1.09±0.06*</td>
<td>0.71±0.04</td>
<td>0.40±0.13#</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=0.020</td>
<td>p=NS</td>
<td>p=NS</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>1.75±0.04</td>
<td>2.0±0.06</td>
<td>1.68±0.16</td>
<td>2.06±0.08</td>
</tr>
<tr>
<td>After therapy</td>
<td>1.22±0.06</td>
<td>1.57±0.09</td>
<td>1.36±0.06</td>
<td>1.39±0.03</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=NS</td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>0.17±0.00</td>
<td>0.18±0.00</td>
<td>0.17±0.00</td>
<td>0.17±0.01</td>
</tr>
<tr>
<td>After therapy</td>
<td>0.33±0.03</td>
<td>0.27±0.00</td>
<td>0.19±0.02</td>
<td>0.30±0.07</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=NS</td>
</tr>
</tbody>
</table>

Fib, fibrinogen; Hs-CRP, high-sensitivity C-reactive protein; IL-6, Interleukin-6; PAI-1, plasminogen activator inhibitor-1; TC, total serum cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; *p<0.05 compared with the LETO-saline group; #p<0.05 compared with the IGT-OLETF saline group; NS, not statistically significant

Table 3 The changes of inflammatory markers with liraglutide treatment (means ± SEM)

<table>
<thead>
<tr>
<th></th>
<th>LETO rats</th>
<th></th>
<th>IGT - OLETF rats</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Saline (N=8)</td>
<td>Saline (N=8)</td>
<td>50 μg/kg (N=8)</td>
</tr>
<tr>
<td>Fib (U/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>55.38±1.92</td>
<td>74.04±1.66*</td>
<td>76.03±1.43*</td>
<td>73.66±4.01*</td>
</tr>
<tr>
<td>After therapy</td>
<td>62.51±3.64</td>
<td>94.20±1.32*</td>
<td>80.45±1.21*</td>
<td>81.60±3.40*</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=0.003</td>
<td>p=NS</td>
<td>p=NS</td>
</tr>
<tr>
<td>Hs-CRP (ng/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>3.56±0.16</td>
<td>5.53±0.17*</td>
<td>5.37±0.14*</td>
<td>5.32±0.41*</td>
</tr>
<tr>
<td>After therapy</td>
<td>4.22±0.35</td>
<td>5.72±0.18*</td>
<td>4.14±0.17</td>
<td>3.90±0.48#</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=NS</td>
</tr>
<tr>
<td>IL-6 (pg/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>5.11±0.38</td>
<td>8.89±0.27*</td>
<td>8.18±0.20*</td>
<td>8.18±0.56*</td>
</tr>
<tr>
<td>After therapy</td>
<td>4.73±0.38</td>
<td>8.72±0.19*</td>
<td>5.63±0.32#</td>
<td>4.79±0.90#</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=0.022</td>
<td>p=0.023</td>
</tr>
<tr>
<td>TNF-α (ng/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>31.70±3.00</td>
<td>48.90±2.62*</td>
<td>47.00±2.30*</td>
<td>47.47±3.24*</td>
</tr>
<tr>
<td>After therapy</td>
<td>34.55±3.62</td>
<td>53.22±2.09*</td>
<td>38.21±1.19#</td>
<td>31.62±6.30#</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=NS</td>
<td>p=0.047</td>
<td>p=0.023</td>
</tr>
<tr>
<td>PAI-1 (ng/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before therapy</td>
<td>26.45±1.54</td>
<td>48.67±3.01*</td>
<td>50.42±2.04*</td>
<td>45.86±5.71*</td>
</tr>
<tr>
<td>After therapy</td>
<td>22.03±2.73</td>
<td>63.37±0.99*</td>
<td>27.74±3.19#</td>
<td>37.34±21.88#</td>
</tr>
<tr>
<td></td>
<td>p=NS</td>
<td>p=0.026</td>
<td>p=0.004</td>
<td>p=NS</td>
</tr>
</tbody>
</table>

Fib, fibrinogen; Hs-CRP, high-sensitivity C-reactive protein; IL-6, Interleukin-6; PAI-1, plasminogen activator inhibitor-1; *p<0.05 compared with the LETO-saline group; #p<0.05 compared with the IGT-OLETF saline group; NS, not statistically significant
Liraglutide reverses prediabetes

Liraglutide reverses prediabetes

23

Liraglutide reverses prediabetes

Liraglutid
hypertriglyceremia, insulin resistance, and impaired beta cell function at the age of 24 weeks. Our findings surrounding the diabetic phenotype of OLETF rats are similar to Kawano’s report [26]. 2) Liraglutide treatment only acutely reduced food intake within the first week. Bodyweight loss was concomitantly induced by liraglutide in the first week but the effect was consistent until the end of treatment and independent of food intake. 3) Three doses of Liraglutide treatment suppressed IFG, IGT and insulin resistance. It also improved hypertriglyceremia and inflammatory state. 4) Liraglutide treatment preserved islet morphology. 5) Liraglutide up-regulated antiapoptotic Bcl-2 and down-regulated proapoptotic Bax expression in islets, which may contribute to its protective effect on islet structure and function.

Since it was developed in 1991, OLETF rat model has contributed substantially to understanding the pathophysiology and treatment of T2DM and its complications [27] because it spontaneously develops obesity, hyperlipidemia, glucose intolerance after 18 weeks of age, and late onset of diabetes at 23 weeks of age [26, 28]. In addition, a gene mutation similar to OLETF rats, i.e., cholecystokinin-1 (CCK-1) and cholecystokinin-2 (CCK-2) receptor polymorphism has been found in patients with obesity and T2DM [6], and a genetic locus related to CCK has also been identified in Mexican Americans, which influences BMI and progresses to T2D [29]. Therefore, OLETF rats younger than 18 weeks could be an ideal physiological model for studying the treatment of prediabetes [30]. In fact, we found obesity, hyperlipidemia, glucose intolerance and insulin resistance have already occurred in 12 weeks old OLETF rats.

As mentioned previously, human GLP-1 analogues can decrease gastric emptying and suppress appetite, thereby promoting weight loss. Our results have clearly shown that the effect of liraglutide on food intake was acute and short term but its effect on weight loss was sustained and independent of food intake, suggesting that the effect of liraglutide on
weight loss may be due to other mechanisms rather than decreased food intake. Similar findings were reported with exenatide treatment. Mack et al. [31] used exenatide to treat high-fat-fed rats and found that the food intake was significantly reduced during the first week of exenatide treatment. But during weeks 3 and 4, exenatide-treated rats displayed food intake levels similar to vehicle-treated rats while the bodyweight loss in these animals was sustained. In addition, the weight loss was accompanied by a loss of fat tissue, with a sparing of lean mass. They supposed that the underlying mechanism of bodyweight loss by exenatide was satiety-related rather than altering locomotion. In the UCD-T2DM rat model of diabetes, Cummings et al. [20] reported a sustained reduction of energy intake by liraglutide treatment. But they also found that liraglutide-treated animals had a lower percentage of body fat mass and better plasma glucose control compared with food-restricted animals despite similar weight loss, suggesting a preferential increase of lipid oxidation with liraglutide treatment rather than reduced energy intake. Although we did not measure body fat mass in the present study, the reduction of TC and TG in liraglutide-treated animals also indicated an increase in lipid oxidation due to liraglutide treatment.

In our prediabetic OLETF rats, the effect of liraglutide on weight loss may be suppressed by decreased food intake due to the lack of CCK-A receptors, which results in a reduced ability to process nutrient elicited gastrointestinal satiety signals in this rat model. Nevertheless, our results and others’ findings further confirm that the effect of GLP-1 agonists on weight loss is strong and beneficial regardless of changes in food or energy intake.

In the present study, liraglutide effectively suppressed the diabetes onset and reversed IFG to normal in nearly 50% of OLETF rats. The transition from pre-diabetes to diabetes involves at least two major underlying mechanisms, namely, insulin resistance and impaired beta cell function. Our data suggest that both abnormalities have initiated in 12 weeks old OLETF rats and further deteriorate at the age of 24 weeks. Liraglutide retards the deterioration of insulin resistance but significantly improves IPG and impaired beta cell function. The hyperinsulinemia and insulin resistance in some liraglutide-treated OLETF rats may be related to remaining obesity though liraglutide did reduce their bodyweight to a certain extent. The underlying mechanisms of how liraglutide improves IPG and beta cell function are obscured. Using a ZDF rat model in a pair-feeding experiment, Sturis et al. [32] found that 8 days treatment with liraglutide in rats with beta-cell deficiencies resulted in a significantly lower glucose excursion in response to oral glucose compared to vehicle treatment. Therefore, they believed that part of the antihyperglycemic effect of liraglutide was due to reduced food intake. However, this is in contrast to our findings, in which the FPG level was not related to bodyweight gain and food intake. Wang and Brubaker used the GLP-1 analogue Exendin-4 to treat 6-week old db/db mice and found that Exendin-4 treatment delayed the onset of diabetes through a mechanism involving Akt1 and expansion of the functional beta-cell mass [33]. In the present study, we found that a decreased antiapoptotic factor Bcl-2 expression and an increased proapoptotic factor Bax expression in pancreatic islets of vehicle-treated OLETF rats were reversed by 12-week liraglutide treatment; meanwhile the abnormal islet structure was preserved by liraglutide treatment. We therefore speculate that liraglutide may protect islet formation and function through the regulation of apoptotic pathways, thereby reversing IFG and suppressing the diabetes onset.

Apart from protecting islet formation and function, liraglutide may also prevent the overt diabetes by inhibiting lipid metabolism and inflammatory reactions, thereby improving insulin resistance. Previous studies have shown that increased triglyceride levels, decreased high-density lipoprotein cholesterol (HDL-c) levels, and increased inflammatory markers can predict the progression to T2DM [34, 35]. Increased adipose tissue is a major factor to induce insulin resistance in obesity through the release of biochemical agents and inflammatory cytokines [36-38], and inflammatory cytokines may interfere with islet beta-cell proliferation in a synergistic and glucose-independent manner [37]. Man et al. also reported that impaired beta-cell function and deposition of fat droplets in the pancreas could be a consequence of hypertriglyceridemia in OLETF rats [39]. Therefore, a treatment targeting high levels of lipid metabolism and inflammatory reactions in prediabetic subjects may dramatically preserve beta-cell function and prevent diabetes. In the present study, we found liraglutide treatment significantly reduced serum levels of TC and inflammatory markers such as Hs-CRP, IL-6, TNFα and PAI-1 in OLETF rats. TG level was also significantly lower in liraglutide-treated rats than vehicle-treated controls. However, LDL and HDL lev-
els as well as their ratio (data not shown) were not different between OLETF rats and normal controls before and after treatment. This may be related to their similar amount of food intake. Raun et al. also indicated that liraglutide improved insulin sensitivity and secretion, probably via reducing fat mass, thereby reducing circulating or islet triglycerides [40]. To our knowledge, this is the first report regarding the suppression of serum levels of inflammatory markers by liraglutide in prediabetic animals. Inflammation is closely related to cardiovascular complications in diabetes. The favorable effect of liraglutide on inflammatory status may help to prevent cardiovascular pathologies from the prediabetes stage. It is unknown how liraglutide inhibits inflammatory reaction. In vitro study has shown that liraglutide can dose-dependently inhibit NF-κB activation and TNFα-induced IκB degradation in human umbilical vein endothelial cells [41]. We suppose the suppression of inflammatory markers by liraglutide partly results from the reduction of body weight and lipid metabolism because a positive correlation was found between the bodyweight gain and serum level of Hs-CRP, and between the serum level of TG and PAI-1. Further studies are needed.

According to FDA’s guidance [25], liraglutide 50µg/kg twice daily in rats can be converted to nearly 1 mg/day in humans (assuming human bodyweight as 60kg). Our results have shown that liraglutide can improve glycemic metabolism and insulin sensitivity as well as inflammatory status with a dose as low as 50µg/kg twice daily, which is similar to commonly used dosage of liraglutide clinically. Therefore, our results can be implicated as a proper reference for clinical practice.

Some limitations remain in the present study. A control group of LETO rats with liraglutide treatment has not been included in the study, which may cause some concerns about the effect of liraglutide on body weight and serum glucose level in LETO rats. There was not any report about the liraglutide treatment on LETO rats previously. A double-blind trial in 24 healthy Japanese men by Irie et al. [42] demonstrated that liraglutide could decrease mean and postprandial plasma glucose in dose dependent manner but all values remained within normal ranges. Although there was a tendency for weight to decrease with liraglutide in comparison to placebo, it is not significant. Clinical studies also show that liraglutide increases insulin production in a glucose-dependent manner [14, 43]. We can speculate that liraglutide treatment may lead to limited changes in body weight, and blood glucose and insulin levels in LETO rats after meal. But our purpose is to investigate the effect of liraglutide on prediabetes mainly by comparing its effect on OLETF rats before and after treatment. Therefore, omitting the LETO liraglutide group won’t have a big impact on the conclusion of the present study. In addition, the semiquantitative measurement of Bcl-2 and Bax by immunohistochemistry is not as accurate as that by Western blot. But it can still indicate the significant changes to a certain extent and also provide information about the expression localization in cells. Nevertheless, this is the first study to systemically investigate the effect of liraglutide in prediabetic OLETF rats, providing useful information for the application of liraglutide clinically.

In conclusion, chronic liraglutide administration, through its actions on glucose homeostasis by various mechanisms, resulted in highly efficacious diabetes prevention. Our findings suggest that a long-term treatment with liraglutide in prediabetic animals can not only prevent the onset of diabetes but also reverse hyperlipideamia and a high inflammatory status.

Acknowledgments

This work was supported by the China International Medical Foundation β-cell Academy research project. The authors gratefully acknowledge the technical support provided by the Institute of Transplant Immunology, Organ Transplant Department, Zhujiang Hospital, Southern Medical University. We thank Dr. Kazuya Kawano for providing OLETF and LETO rats.

Contribution Statement

We declare that all the listed authors have participated actively in the study and all meet the requirements of the authorship. Dehong Cai, Nanjing Guo and Jia Sun designed the study and wrote the protocol. Nanjing Guo and Zhen Zhang completed the study. Hong Chen and Jia Sun contributed to the literature search. Hua Zhang undertook the statistical analysis and Nanjing Guo wrote the draft of the manuscript.

Disclosure Statement

The authors have no conflicts of interest to declare.
Liraglutide reverses prediabetes

References

28 Guo

28. Kawano K, Hiroshima T, Mori S, Saitho Y, Kurosumi M, Natori T (1992) Spontaneous long-term hypergly-

35. Festa A, D’Agostino R, Jr., Tracy RP, Haffner SM (2002) Elevated levels of acute-phase proteins and plas-

39. Man ZW, Zhu M, Noma Y, Toide K, Sato T, Asahi Y, Hiroshima T, Mori S, Kawano K, Mizuno A et al. (1997) Impaired beta-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceri-
demia in OLETF rat, a model of spontaneous NIDDM. Diabetes 46(11):1718-1724.

