Safety and efficacy of sitagliptin in combination with transient continuous subcutaneous insulin infusion (CSII) therapy in patients with newly diagnosed type 2 diabetes

Guoyue Yuan1)*, Jue Jia1)*, Caili Zhang1), Shuqin Yu1), Sijing Dong1), Jingjing Ye1), Tianyi Zhu1), Bingqian Tang1), Weyun Qian1), Dong Wang1), Ling Yang1), Libin Zhou2) and Chaoming Mao1)

1) Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Jiangsu 212001, China
2) Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine And Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, Shanghai 200025, China

Abstract. Sitagliptin was used as monotherapy or in combination with metformin, thiazolidinedione or sulfonylurea. It is not clear whether effects are enhanced or unique when in combination with transient continuous subcutaneous insulin infusion (CSII) therapy. The aim of this study was to assess the safety and efficacy of sitagliptin in combination with transient CSII therapy in patients with newly diagnosed type 2 diabetes. Eighty patients with newly diagnosed type 2 diabetes from July 2011 to May 2013 were recruited into the study. These patients were randomly divided into a CSII monotherapy group (group A, n = 40) or a sitagliptin in combination with CSII therapy group (group B, n = 40) and received insulin intensive therapy. Treatments were maintained for 2 weeks. 75g oral glucose tolerance test (OGTT) was performed before and after treatments, and the levels of glucose, insulin and C-peptide were examined. The results indicated that, compared with CSII therapy group, the level of plasma glucose significantly decreased, the levels of insulin and C-peptide strikingly increased and homeostasis model assessment for beta-cell function (HOMA-β) and Insulinogenic index (Ins index) were improved in the group of sitagliptin in combination with CSII therapy. Above all, the incidence of hypoglycemia was lower, insulin doses were less and the rate of recovery to normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) determined by 75gOGTT was higher in the latter. So, Sitagliptin in combination with CSII therapy can be a new safe and effective therapy in patients with newly diagnosed type 2 diabetes.

Key words: Sitagliptin, Continuous subcutaneous insulin infusion (CSII), Newly diagnosed, Type 2 diabetes, Dipeptidyl peptidase-4 (DPP-4)

DIABETES MELLITUS is a global epidemic, and type 2 diabetes accounts for almost 90% of patients with the disease. In many countries, almost 10% of the health care budget is allocated for type 2 diabetes care. The prevalence of type 2 diabetes is globally increasing and the International Diabetes Federation has predicted that the number of people with diabetes will increase from 366 million to 552 million by 2030 [1, 2].

Type 2 diabetes is a chronic disease marked by progressive β-cells dysfunction leading to insulin deficiency. Insulin secretion declines because of the toxic effects of hyperglycemia (glucotoxicity) and free fatty acids (lipotoxicity) on pancreatic β-cells [3]. The vicious cycle of elevated glucose further impairs and possibly destroys β-cells, which will eventually lead to complete failure of insulin production [4]. Therefore, early and intensive correction of these insults might preserve endogenous pancreatic function. Several short-term studies have shown that intensive insulin therapy for 2–3 weeks at the time of diagnosis leads to rapid improvement in insulin secretion, which may be maintained months after therapy was stopped [5-6]. Transient continuous subcutaneous insulin infusion (CSII) could be effectively used in achieving adequate glycemic control as well as significant improvement of β-cells secretion in newly diagnosed type 2 diabetic patients with severe hyperglycemia. Nearly one-half of the patients can maintain euglycemia on diet only.
effects are enhanced or unique when sitagliptin is used in combination with transient CSII therapy. This study is aimed to assess the safety and efficacy of sitagliptin in combination with transient CSII therapy in patients with newly diagnosed type 2 diabetes.

Materials and Methods

Patients

Eighty patients (41 men and 39 women) with newly diagnosed type 2 diabetes at the Affiliated Hospital of Jiangsu University (Zhenjiang, Jiangsu, China) hospitalized in the Department of Endocrinology from July 2011 to May 2013 were recruited into the study. Diabetes mellitus was diagnosed according to the criteria published by the World Health Organization in 1999. The patients had no history of using any antihyperglycemic drugs and were negative for anti-glutamic acid decarboxylase antibodies. Patients were excluded from the trial if they were unlikely to adhere to the protocol and if they had acute or severe dysfunction of the heart, brain, lungs, liver or kidneys or intercurrent illness or pregnancy. This work was approved by the ethical committee of the Affiliated Hospital of Jiangsu University, registered to Head of Chinese Clinical Trial Registry (ChiCTR-TRC-13003782) and informed consent was given by all subjects.

Study design and treatment

Patients were hospitalized and assigned to a CSII monotherapy group (group A, n = 40) or a sitagliptin in combination with CSII therapy group (group B, n = 40) according to the random number method. All patients participated in diabetes education programs during hospitalization. Patients in group A received rapid-acting insulin analog (insulin Lispro, Eli Lilly and Company, USA) as basal and prandial insulin with an insulin pump (Medtronic, USA). Patients in group B received rapid-acting insulin analog with an insulin pump (the types of insulin and pump were the same as group A) and oral sitagliptin 100 mg once every morning. Total initial insulin doses were 0.4-0.6 IU/kg in the two groups (including basal and boluses insulin) and total daily doses were divided into 50% basal and 50% bolus injection. The basal and boluses of insulin doses were adjusted respectively with a range of 4 to 6 units daily according to the fasting and postprandial capillary blood glucose of three meals. The glycemic control target was defined as fasting plasma glu-
Sitagliptin in combination with CSII therapy

Insulinogenic index (Ins index) and Matsuda index (ISI_M) were used to assess β-cell function and insulin sensitivity. HOMA-IR = (FPG×fasting insulin)/22.5. HOMA-β = (20×fasting insulin)/(FPG − 3.5). Ins index = [(Ins30 − Ins0)(pmol/L)]/(Glu30 − Glu0)(mmol/L)] and ISI_M (μIU/mL, mg/mL) = 10,000/[Glu0 (mg/dL) × Ins0 (μIU/mL) × average glucose OGTT (mg/dL) × average insulin OGTT (μU/mL)]^{1/2}. The rate of recovery to NGT or IGT determined by 75gOGTT was calculated (the criteria: FPG<7.0 mmol/L, 2-h PPG <10.0 mmol/L). Basal and boluses insulin doses were recorded during treatment. Hypoglycemia was defined as capillary blood glucose <3.9 mmol/L with or without clinical symptoms.

Statistical analyses

For sample size, the calculation was made in statistical tables, with the following settings: power (1−β) was set at 80%, α was set at 0.05, and δ/σ = 0.7, resulting in a sample size of 68 subjects, for future losses 20% were included. The sample consisted of 80 adult subjects (27 women and 53 men). Normally distributed and quantitative data were expressed as mean±SD values. Quantitative variable differences between the two groups were compared by samples-independent Student’s t tests; the differences before and after treatment were analyzed with samples-paired Student’s t test. The χ² test was performed to compare for discrete variables. All statistical analyses were conducted by using the SPSS version 16.0 statistical package. A value of P < 0.05 was considered statistically significant.

Results

Patients studied

A total of 80 patients completed this research. None dropped out, and no serious adverse effects were observed during the intervention. The two groups were well balanced. There were no significant differences in age, sex, BMI, WHR, SBP, DBP, TG, CHOL, HDL-C and LDL-C before treatment (P > 0.05). No significant differences in body weight of both groups, BMI, WHR, SBP, DBP and HDL-C were observed before and after 2 weeks’ intensive treatment (P > 0.05). After treatment, TG, CHOL and LDL-C of both groups were significantly lower than the levels before treatment (P< 0.05), while TG and CHOL between the two groups were of no significant differences (P > 0.05) (Table 1a, 1b).
After 2 weeks’ intensive treatment, the levels of plasma glucose at all points of both groups were respectively significantly lower than the levels before treatment ($P < 0.05$). There were great decreases in the levels of plasma glucose at 60min, 120min and 180min (group B vs. group A) ($P < 0.05$).

Glycemic control

From daily blood glucose profile (Table 2), we can conclude that before treatment, the levels of the fasting and postprandial capillary blood glucose of three meals between the two groups were of no significant differences ($P > 0.05$). After 2 weeks’ intensive treatment, the levels of plasma glucose at all points of both groups were respectively significantly lower than the levels before treatment ($P < 0.05$). There were great decreases in the levels of plasma glucose at 60min, 120min and 180min (group B vs. group A) ($P < 0.05$).

Effects on β-cell function

Compared with those before treatment, the levels of insulin and C-peptide at fasting and 4 points (30min, 60min, 120min and 180min) after insulin release test (IRT) and C-peptide release test (CRT) increased significantly in group B ($P < 0.05$). The levels of insulin and C-peptide at 30min, 60min, 120min and 180min
Sitagliptin in combination with CSII therapy

Incidence of hypoglycemia

In group A, 8/40 patients (20.0%) experienced a total of 14 hypoglycemic events, among which two patients (2/40, 5%) experienced twice severe hypoglycemia including drowsiness and epilepsy. In group B, 2/40 patients (5.0%) experienced a total of 6 hypoglycemic events without severe hypoglycemia. Incidence of hypoglycemia decreased obviously for group B vs. group A (P < 0.05).

Discussion

Glucotoxicity is one of the major factors involved in progressive deterioration of β-cell function and mass in type 2 diabetes mellitus [15]. β-cell function can be improved, resulting in temporary remission in newly diagnosed type 2 diabetes mellitus treated with short-term intensive insulin therapy [6, 15]. Patients with type 2 diabetes mellitus who received intensive glucose therapy had a lower risk of microvascular and macrovascular complications than those receiving conventional dietary therapy [16].

The study of Weng’s showed that more patients with newly diagnosed type 2 diabetes achieved target glycaemic control in the CSII group in less time than those treated with oral hypoglycaemic agents. Remission rates after 1 year achieved 51.1% in the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group A</th>
<th></th>
<th>Group B</th>
<th></th>
<th></th>
<th>#</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>before treatment</td>
<td>after treatment</td>
<td>P</td>
<td>before treatment</td>
<td>after treatment</td>
<td>P</td>
<td>#</td>
</tr>
<tr>
<td>Glu0 (mmol/L)</td>
<td>12.34±2.78</td>
<td>7.00±1.26</td>
<td>0.000</td>
<td>11.90±3.46</td>
<td>6.40±1.52</td>
<td>0.000</td>
<td>0.821</td>
</tr>
<tr>
<td>Glu30 (mmol/L)</td>
<td>16.78±3.90</td>
<td>9.70±1.79</td>
<td>0.000</td>
<td>15.74±4.12</td>
<td>8.89±2.36</td>
<td>0.000</td>
<td>0.653</td>
</tr>
<tr>
<td>Glu60 (mmol/L)</td>
<td>22.00±3.89</td>
<td>13.88±2.07</td>
<td>0.000</td>
<td>20.69±4.47</td>
<td>12.27±2.41</td>
<td>0.000</td>
<td>0.734</td>
</tr>
<tr>
<td>Glu120 (mmol/L)</td>
<td>22.80±4.24</td>
<td>14.25±3.44</td>
<td>0.000</td>
<td>22.79±4.57</td>
<td>11.64±3.20</td>
<td>0.000</td>
<td>0.375</td>
</tr>
<tr>
<td>Glu180 (mmol/L)</td>
<td>19.79±4.80</td>
<td>11.65±3.46</td>
<td>0.000</td>
<td>20.18±5.28</td>
<td>9.70±4.01</td>
<td>0.000</td>
<td>0.590</td>
</tr>
<tr>
<td>Ins0 (μIU/L)</td>
<td>4.93±1.05</td>
<td>4.97±0.86</td>
<td>0.512</td>
<td>4.81±0.91</td>
<td>5.59±1.10</td>
<td>0.015</td>
<td>0.597</td>
</tr>
<tr>
<td>Ins30 (μIU/L)</td>
<td>9.52±1.03</td>
<td>12.40±1.45</td>
<td>0.000</td>
<td>8.94±0.98</td>
<td>13.11±1.32</td>
<td>0.000</td>
<td>0.631</td>
</tr>
<tr>
<td>Ins60 (μIU/L)</td>
<td>13.69±1.12</td>
<td>21.38±1.71</td>
<td>0.000</td>
<td>14.26±1.07</td>
<td>26.14±1.34</td>
<td>0.000</td>
<td>0.710</td>
</tr>
<tr>
<td>Ins120 (μIU/L)</td>
<td>15.70±0.97</td>
<td>30.10±2.43</td>
<td>0.000</td>
<td>13.56±1.85</td>
<td>36.00±4.13</td>
<td>0.000</td>
<td>0.663</td>
</tr>
<tr>
<td>Ins180 (μIU/L)</td>
<td>13.50±1.86</td>
<td>28.13±2.74</td>
<td>0.016</td>
<td>13.42±1.33</td>
<td>34.84±3.79</td>
<td>0.000</td>
<td>0.549</td>
</tr>
<tr>
<td>C-P0 (ng/dL)</td>
<td>1.78±0.75</td>
<td>1.86±0.65</td>
<td>0.412</td>
<td>1.57±0.74</td>
<td>1.98±0.70</td>
<td>0.000</td>
<td>0.638</td>
</tr>
<tr>
<td>C-P30 (ng/dL)</td>
<td>2.40±1.02</td>
<td>2.79±1.11</td>
<td>0.029</td>
<td>2.10±0.89</td>
<td>2.97±1.18</td>
<td>0.000</td>
<td>0.713</td>
</tr>
<tr>
<td>C-P60 (ng/dL)</td>
<td>3.32±1.87</td>
<td>4.10±1.24</td>
<td>0.003</td>
<td>3.35±2.35</td>
<td>5.20±2.46</td>
<td>0.000</td>
<td>0.529</td>
</tr>
<tr>
<td>C-P120 (ng/dL)</td>
<td>3.91±2.02</td>
<td>5.85±1.76</td>
<td>0.000</td>
<td>3.87±1.62</td>
<td>7.55±4.27</td>
<td>0.000</td>
<td>0.326</td>
</tr>
<tr>
<td>C-P180 (ng/dL)</td>
<td>3.84±2.18</td>
<td>5.31±2.10</td>
<td>0.001</td>
<td>3.83±2.06</td>
<td>6.84±3.90</td>
<td>0.000</td>
<td>0.864</td>
</tr>
</tbody>
</table>

#, Group A vs. Group B before treatment; *, Group A vs. Group B after treatment

Table 3 Plasma glucose comparisons, insulin comparisons, and C-peptide comparisons of the two groups before and after treatment

The rate of recovery to NGT or IGT and insulin doses

According to the criteria of FPG<7.0 mmol/L and 2-h PPG <10.0 mmol/L, after 2 weeks intensive treatment, the rate of recovery to NGT or IGT determined by 75gOGTT of group A and group B was respectively 15% (6/40) and 35% (14/40). There was statistically significant difference between the two groups (Table 4). After 2 weeks’ intensive treatment, the basal, boluses and total insulin doses of group B were all less than those of group A (P < 0.05) (Table 4).
Table 4 Rate of recovery to NGT or IGT and insulin doses comparisons between the two groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group A</th>
<th>Group B</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of recovery to NGT or IGT (%)</td>
<td>15</td>
<td>35</td>
<td>0.039</td>
</tr>
<tr>
<td>Basal insulin doses (U)</td>
<td>16.52±8.61</td>
<td>11.89±6.37</td>
<td>0.022</td>
</tr>
<tr>
<td>Boluses insulin doses (U)</td>
<td>18.43±9.17</td>
<td>13.59±6.42</td>
<td>0.016</td>
</tr>
<tr>
<td>Total insulin doses (U)</td>
<td>34.89±17.04</td>
<td>25.48±12.07</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Fig. 1a HOMA-IR comparison of the two groups before (open bars) and after (closed bars) treatment
Group A, CSII monotherapy group; Group B, sitagliptin in combination with CSII therapy group.
#P < 0.05 (group A before treatment vs. after treatment),
*P < 0.05 (group B before treatment vs. after treatment).

Fig. 1b HOMA-β comparison of the two groups before (open bars) and after (closed bars) treatment
Group A, CSII monotherapy group; Group B, sitagliptin in combination with CSII therapy group.
#P < 0.05 (group A before treatment vs. after treatment),
*P < 0.05 (group B before treatment vs. after treatment),
§P < 0.05 (group A vs. group B after treatment).

Fig. 2a Ins index comparison of the two groups before (open bars) and after (closed bars) treatment
Group A, CSII monotherapy group; Group B, sitagliptin in combination with CSII therapy group.
#P < 0.05 (group A before treatment vs. after treatment),
*P < 0.05 (group B before treatment vs. after treatment),
§P < 0.05 (group A vs. group B after treatment).

Fig. 2b ISIM comparison of the two groups before (open bars) and after (closed bars) treatment
Group A, CSII monotherapy group; Group B, sitagliptin in combination with CSII therapy group.
#P < 0.05 (group A before treatment vs. after treatment),
*P < 0.05 (group B before treatment vs. after treatment),
§P < 0.05 (group A vs. group B after treatment).
CSII group. β-cell function and acute insulin response improved significantly after intensive interventions. The increase in acute insulin response was sustained in the CSII group but significantly declined in the oral hypoglycaemic agents group at 1 year in all patients in the remission group [6]. Short-term studies with CSII showed that CSII compared with MDI is a more efficient method of improving prompt glucose control and it does not lead to the increase in the insulin dosage [17, 18]. Insulin pumps provide precise insulin delivery throughout the day and improve the accuracy of bolus dose calculations to closely follow the physiologic patterns of secretion observed in patients without diabetes. In this way, improved glycemic control with less frequent and severe hypoglycemic episodes can be achieved. Therefore, CSII may be the best current therapeutic option for patients with diabetes [19].

In our study, the levels of plasma glucose at all points of both groups after 2 weeks’ intensive treatment were respectively significantly lower than those before treatment. The levels of insulin and C-peptide after IRT and CRT increased significantly in both groups. HOMA-IR declined and HOMA-β increased significantly in both groups after treatment. These improvements were due to early intensive glucose control of type 2 diabetes, elimination of malignant effects induced by glucotoxicity and lipotoxicity, rest of islet cell and recovery of β-cell damage. Irreversible β-cell dysfunction and β-cell number decrease could be avoided in diabetic deterioration. Improvement of β-cell function is the main reason for blood glucose remission [20]. The progressive deterioration of glycemic control in individuals with type 2 diabetes mellitus results from insulin resistance combined with the ongoing loss of β-cell function. Although it has been suggested that most β-cell dysfunction occurs after the development of type 2 diabetes mellitus, studies have documented a substantial early loss of β-cell function, particularly during the prediabetic state. In patients diagnosed with type 2 diabetes mellitus, β-cell function continues to decline despite treatment with commonly prescribed antihyperglycaemic medications, and ultimately exogenous insulin administration is required to maintain optimal glycemic control. Thus, interventions to address the early decline in β-cell function could potentially alter the course of type 2 diabetes mellitus, preventing or delaying its onset and decreasing the incidence of complications [21].

GLP-1 can enhance glucose-stimulated insulin secretion, which is abolished upon DPP-4-mediated removal of their N-terminal dipeptides in vitro [22]. DPP-4 inhibitor can block the inactivation of GLP-1 and GIP, thus raising plasma concentrations of the intact, active form of these peptides and thereby improving islet function by increasing α-cell and β-cell sensitivity to glucose [23, 24]. Recently, DPP-4 inhibitor became one of second-line regimens after metformin in the treatment of type 2 diabetes in the position statement suggested by the American Diabetes Association and the European Association for the Study of Diabetes [25]. Previous studies have shown that DPP-4 inhibitors can significantly decrease HbA1c concentration when added to insulin regimens, without an additional risk of hypoglycaemia [8-11]. A study indicated that add-on therapy with sitagliptin to various insulin regimens could decrease daily insulin doses and improve glycemic control without severe hypoglycaemia and/or weight gain [13]. In a 24-week, randomized, active-comparator trial, the addition of sitagliptin resulted in improvement in lowering of HbA1c with less hypoglycaemia and no weight gain as compared with the 25% insulin-increasing approach in subjects using insulin with uncontrolled type 2 diabetes [14]. In our study, there were great decreases in the levels of plasma glucose at 60min, 120min and 180min (sitagliptin in combination with CSII therapy group vs. CSII monotherapy group), and there were great increases in the levels of insulin and C-peptide at 60min, 120min and 180min (sitagliptin in combination with CSII therapy group vs. CSII monotherapy group). HOMA-β and Ins index of sitagliptin in combination with CSII therapy group increased more significantly than those of CSII monotherapy group. Improvements in glycemic control in the sitagliptin group appear to have been because of improved postprandial glucose control. This finding is consistent with the known mechanism of action of sitagliptin, which enhances glucose-dependent insulin secretion by β-cells and inhibits glucagon release from α-cells [26].

GIP seems to be a physiological pancreatic islet regulator with diverging effects on the two main pancreatic glucoregulatory hormones insulin and glucagon. A strong scientific rationale suggests that DPP-4 inhibitors can prevent or counteract hypoglycaemia. This is especially important for the management of insulin-treated patients since the limiting factor in this population is iatrogenic hypoglycaemia [27]. The insulino-tropic effects of incretins are glucose-dependent and
Yuan et al.

decline as postprandial serum glucose levels return to normal ranges. The incretin GIP increases glucagon levels during fasting and hypoglycemic conditions, while potentiatting glucose-induced insulin secretion during hyperglycemia [28]. In particular, for critical patient populations, the combination of DPP-4 inhibitors with basal insulin can be recommended to minimize the risk of hypoglycemia [29]. It showed that linagliptin as add-on therapy to basal insulin in elderly patients (aged 70 years) with inadequately controlled T2DM did not increase the risk of hypoglycemia, relative to placebo [30]. This was confirmed by a post hoc pooled analysis through data from seven randomized, double-blind, placebo-controlled Phase 3 trials. Included were patients aged 65 years, treated with linagliptin 5 mg once daily as monotherapy or in addition to common glucose-lowering therapies. The treatment was well tolerated, linagliptin improved glycemic control, and the incidence of hypoglycemia was comparable with that of the placebo [31]. In our study, after 2 weeks’ intensive treatment, the basal, boluses and total insulin doses of sitagliptin in combination with CSII therapy group were all less than those of CSII monotherapy group \((P < 0.05)\), while the rate of recovery to NGT or IGT determined by 75gOGTT of the former was higher than that of the latter. The incidence of hypoglycemia decreased obviously for sitagliptin in combination with CSII therapy group vs. CSII monotherapy group.

All in all, we firstly explore safety and efficacy of sitagliptin in combination with transient CSII therapy in patients with newly diagnosed type 2 diabetes, and we demonstrated the efficacy of this combination therapy to improve pancreatic beta cell function and the safety to reduce hypoglycemia. This can be a new safe and effective therapy in patients with newly diagnosed type 2 diabetes. Since the study period is too short, further long-term and comparative efficacy and tolerability data are required to gather substantial knowledge on the prolonged use of Sitagliptin in addition to CSII.

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (81370965), the Natural Science Foundation of Jiangsu Province, China (BK2009208), the Medical Science and Technology Development Foundation and International Exchange Program of the Jiangsu Province Department of Health (H201247), and the Science and Technology Commission of Zhenjiang City, Jiangsu Province (SH2013027, SH 2013035, SH 2012027, SH2011019).

Disclosure

There are no conflicts of interest that interfere with the impartiality of the research, and there are no potential conflicts of interest that are not fully declared within the text of the article.

References

10. Rosenstock J, Rendell MS, Gross JL, Fleck PR, Wilson

