Effect of 3,5,3′L-Triiodothyronine Administration on Serum Thyroid Hormone Levels in Hypothyroid Patients Maintained on Constant Doses of Thyroxine

MITSUO INADA1, MITSUSHIGE NISHIKAWA1, KOICHI NAITO1, HITOSHI ISHII1, KYOSHI TANAKA1, SHUNICHIRO KURATA2, MARIKO OISHI3 AND HIROO IMURA1

1Second Division, Department of Internal Medicine, Kyoto University School of Medicine, Kyoto, 2Endocrine Section, Department of Internal Medicine, Tenri Hospital, Tenri, Nara and 3Department of Internal Medicine, Kyoto National Hospital, Kyoto, Japan

Abstract

In order to investigate the effect of 3, 5, 3′L-triiodothyronine (T₃) administration on thyroid hormone concentrations in serum, thyroxine (T₄), T₃, 3, 3′, 5′L-triiodothyronine (reverse T₃, rT₃) and thyroid stimulating hormone (TSH) concentrations in serum were determined before and after T₃ administration in 10 hypothyroid patients maintained on constant doses of T₄.

Ten hypothyroid patients given 100 µg of T₄ for approximately 3 months had almost normal T₄ and T₃ concentrations in serum. Seven patients showed almost normal rT₃ concentrations in serum and they were slightly diminished in the remaining 3 patients. TSH levels in serum were almost within the normal limit in 7 out of 10 patients. However, despite the elevation of T₄ and T₃ levels, 3 patients had markedly elevated TSH levels.

Values for serum T₄ concentrations were decreased 4 weeks after the administration of 50 µg T₃ in all patients maintained on constant doses of T₄, although they were almost within the normal range. T₃ concentrations in serum, which was obtained just before the administration of the next daily doses of T₃, were markedly elevated in 6 of 10 patients after T₃ administration and the remaining 4 patients had also slightly higher T₃ concentrations than those before T₃ administration. On the other hand, serum rT₃ concentrations were diminished in 5 patients during T₃ ingestion. They were somewhat diminished or almost unchanged before and after T₃ administration in the remaining 5 patients. Moreover, 3 patients with elevated TSH levels during T₄ administration showed almost normal TSH levels after T₄ and T₃ ingestion.

The results showed the reciprocal relationship between T₃ and rT₃ levels in serum after T₃ administration in hypothyroid patients maintained on constant doses of T₄. Furthermore, the present findings suggest that the administration of both T₄ and T₃ might be a more suitable replacement therapy in the patients with hypothyroidism than T₄ alone.

It has been reported that the protein bound iodine (PBI) was decreased after 3, 5, 3′L-triiodothyronine (T₃) administration in hypothyroid patients maintained on the constant doses of thyroxine (T₄) (Farmer et al., 1969). However, the changes in serum T₃ and 3, 3′, 5′L-triiodothyronine (reverse T₃, rT₃) after T₃ administration have not been observed in detail.

In the present study, the effect of T₃ administration on serum T₄, T₃, rT₃ and thyroid stimulating hormone (TSH) concentrations was investigated in hypothyroid patients treated with constant doses of T₄.

Received September 10, 1979.
Materials and Methods

Clinical materials

Ten patients with primary hypothyroidism were given orally daily dose of 100 μg of T₄ for over 3 months in the outpatient clinic of Tenri Hospital. The daily replacement dose in micrograms of T₄ per kilogram body weight ranged from 1.54 to 2.5 μg/day/kg body weight (mean±SD=1.98±0.32 μg/day/kg body weight, Table 1). After they entered a clinically euthyroid state, 50 μg of T₃ was administered orally for about a month, while the dose of T₄ was kept constant. T₄ was given in 2 doses a day at 12 hr intervals and T₃ in a dose in the morning. The hormone preparations which were administered to these patients were L-T₃ (Thyronamine; Teikoku Zoki, Tokyo, Japan) and L-T₄ (Thyradin S; Takeda, Tokyo, Japan).

All the patients presented typical clinical pictures of hypothyroidism and they had a low basal metabolic rate (BMR) and T₄ concentrations with markedly elevated TSH levels before treatment. Patients with clinically detected liver or renal diseases were not included in this study.

Determinations of T₄, T₃, rT₃ and TSH concentrations in serum

Serum T₄ concentrations were determined according to the method of Murphy and Pattee (Murphy and Pattee, 1964), using the commercial kit provided by Mallinckrot/Nuclear, ST. Louis, USA. The normal range of T₄ was 4 to 13 ng/100 ml. Serum T₃ was measured by radioimmunoassay kit provided by the Dainabott Radioisotope Laboratories, Tokyo, Japan. Normal subjects had T₃ values ranging from 85 to 180 ng/100 ml. The determinations of rT₃ concentrations in serum were carried out with a radioimmunoassay kit purchased from Sereno Laboratories, Boston, USA. Serum rT₃ concentrations ranged from 22 to 39 ng/100 ml in normal volunteers. Serum TSH was measured with a radioimmunoassay kit provided by the Daiichi Radioisotope Laboratories, Tokyo, Japan. The normal limit of TSH values was under 5 μU/ml. There were no significant differences in T₄, T₃, rT₃ and TSH values for the same serum determined in two consecutive assays by the paired t test. Moreover, the coefficients of variation for triplicate determination within an assay in these hormones were under 7.2% in normal subjects.

The concentrations of T₄, T₃, rT₃, and TSH were determined in serum drawn before and 4 weeks after T₃ administration in hypothyroid patients maintained on constant doses of T₄. After treatment with T₄ and T₃, serum was obtained just before administration of the next daily dose in the morning. After separation by centrifugation, serum was stored at −20°C before use. In no case was there any evidence of a systemic change which would suggest alteration of the “steady state” during the course of the studies.

Results

Ten hypothyroid patients given 100 μg of T₄ for about 3 months had normal T₄ concentrations in serum (Table 1). Values for T₃ concentrations in serum ranged 80 to 148 ng/100 ml (mean±SD=122±22 ng/100 ml, Table 1) in these patients: values were almost within normal limits. Seven patients showed normal rT₃ concentrations in serum and 3 patients had low normal rT₃ concentrations (Table 1). After T₄ ingestion, TSH levels were less than 7.2 μU/ml in 7 patients and the remaining 3 patients still had markedly elevated TSH levels (Table 1). The daily replacement doses of T₄ per kilogram body weight in these 3 patients were 1.92 (T. N.), 1.61 (K. T.) and 2 (T. O.) μg/day/kg body weight, respectively (Table 1) and their T₄ and T₃ concentrations in serum were almost within normal limits.

Values for T₄ concentrations in serum were decreased 4 weeks after T₃ administration in all patients maintained on constant doses of T₄, although they were still within normal limits (Table 1). On the other hand, marked elevations in serum T₃ concentrations were found in 6 patients after T₃ administration, but 4 patients had slightly elevated T₃ concentrations, as compared with those before T₃ administration (Table 1). After T₃ administration, rT₃ concentrations in serum were diminished in 5 patients, although they were somewhat diminished or almost unchanged before and after T₃ administration in the remaining 5 patients (Table 1). rT₃ concentrations in serum averaged 21 ± 4 ng/100 ml after T₃ administration the value was significantly lower than that (mean±SD=25 ± 4 ng/100 ml) before T₃ administration by the paired t test (0.01 < p(|t|≥2.933) < 0.02, Table 1).
Table 1. Effect of T₃ administration on serum T₄, T₃, rT₃ and TSH concentrations in hypothyroid patients maintained on constant doses of T₄.

<table>
<thead>
<tr>
<th>No.</th>
<th>Subject</th>
<th>Sex</th>
<th>Age</th>
<th>Body weight (kg)</th>
<th>Daily dose of T₄ (µg/day/kg)</th>
<th>T₄ Before (ng/100 ml)</th>
<th>T₃ Before (ng/100 ml)</th>
<th>rT₃ Before (ng/100 ml)</th>
<th>TSH Before (µU/ml)</th>
<th>After (µU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T. N.</td>
<td>M</td>
<td>28</td>
<td>52</td>
<td>1.92</td>
<td>6.5</td>
<td>5.3</td>
<td>140</td>
<td>156</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>M. F.</td>
<td>F</td>
<td>30</td>
<td>40</td>
<td>2</td>
<td>5.7</td>
<td>4.2</td>
<td>95</td>
<td>145</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Y. U.</td>
<td>F</td>
<td>31</td>
<td>40</td>
<td>2.5</td>
<td>5.5</td>
<td>5.1</td>
<td>137</td>
<td>148</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>K. M.</td>
<td>F</td>
<td>46</td>
<td>55</td>
<td>1.82</td>
<td>11.7</td>
<td>8.3</td>
<td>145</td>
<td>148</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>K. T.</td>
<td>F</td>
<td>47</td>
<td>62</td>
<td>1.61</td>
<td>7.1</td>
<td>5.7</td>
<td>80</td>
<td>140</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>H. M.</td>
<td>F</td>
<td>52</td>
<td>48</td>
<td>2.1</td>
<td>10.4</td>
<td>6.1</td>
<td>123</td>
<td>125</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>M. K.</td>
<td>F</td>
<td>54</td>
<td>65</td>
<td>1.54</td>
<td>7.4</td>
<td>5.1</td>
<td>100</td>
<td>304</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>T. O.</td>
<td>F</td>
<td>57</td>
<td>50</td>
<td>2</td>
<td>6.9</td>
<td>6.5</td>
<td>125</td>
<td>175</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>F. M.</td>
<td>M</td>
<td>67</td>
<td>55</td>
<td>1.82</td>
<td>9.0</td>
<td>5.5</td>
<td>148</td>
<td>248</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>T. K.</td>
<td>M</td>
<td>70</td>
<td>40</td>
<td>2.5</td>
<td>8.2</td>
<td>6.2</td>
<td>123</td>
<td>170</td>
<td>29</td>
</tr>
</tbody>
</table>

Mean ± SD:

<table>
<thead>
<tr>
<th>p</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.01</td>
<td>4-13</td>
</tr>
<tr>
<td><0.05</td>
<td>85-180</td>
</tr>
<tr>
<td><0.02</td>
<td>22-39</td>
</tr>
<tr>
<td><5</td>
<td></td>
</tr>
</tbody>
</table>

Finally, the elevated TSH levels observed in 3 patients during T₄ administration were decreased almost to the normal range after both T₄ and T₃ administration (Table 1).

Discussion

In the present paper, serum T₄ concentrations were diminished after T₃ administration in hypothyroid patients maintained on constant doses of T₄, although they were still within the normal range. The results were consistent with those obtained by Farmer et al. (1969). On the other hand, serum T₃ concentrations were elevated after T₃ administration in patients maintained on constant doses of T₄. Previous studies (Surks et al., 1972; Saberi and Utiger, 1974) have shown that serum T₃ concentrations were increased transiently within the first 1–8 hrs after ingestion of both T₄ and T₃, and returned to the initial value about 24 hr after ingestion. In order to minimize the influence of ingested T₃ on serum T₃ concentrations, serum were obtained just before the administration of the next daily dose in the present study. A recent study (Chiraseveenuprapund et al., 1978), which investigated the conversion of T₄ to T₃ in rat kidney homogenate, has demonstrated that the addition of varying amounts of T₃ into the homogenate incubated with T₄ did not appreciably affect the rate of T₃ formation. They suggested that there was little inhibition of T₄ monodeiodination by the product T₃. Moreover, Grussendorf and Hübner (Grussendorf and Hübner, 1977) found that L-T₃ and D-T₃ very effectively increased the T₄ to T₃ converting activity of liver homogenate in thyroidectomized rat. Therefore, the elevation of the serum T₃ concentration after T₃ administration in the present paper might be partly due to an increase in T₃ production by the elevated conversion rate.

Recently, the determinations of rT₃ concentrations in serum by radioimmunoassay and the turnover studies of radioactive rT₃ have been made by several investigators (Chopra, 1974; Chopra, 1976; Burman et al., 1977; Gavin et al., 1977). They showed
that rT₃ as well as T₃ was a major product of T₄ monodeiodination and that a small proportion of rT₃ production arose directly from the thyroid. Thus, the majority of T₄ metabolized daily was monodeiodinated either to T₃ or to rT₃ and, therefore, the monodeiodination was an essential step in T₄ metabolism. It has been reported that the serum rT₃ concentration was increased in situations where serum T₃ was decreased (Chopra, 1974). These findings suggested that the 5'-'monodeiodination of T₄ was inhibited, resulting in the inhibition of T₃ formation and of rT₃ degradation (Kaplan and Utiger, 1978). In the present paper, serum rT₃ concentrations tended to diminish after T₃ administration in hypothyroid patients maintained on constant doses of T₄, while serum T₃ concentrations were elevated in these patients. The results suggest a reciprocal relationship between serum T₃ concentrations and rT₃ concentrations after T₃ administration in the patients maintained on constant doses of T₄. Thus, it seemed likely from the present findings that 5'-'monodeiodination of T₄ may be stimulated by T₃, causing an elevation in the rate of T₄ to T₃ conversion and of rT₃ degradation.

Since the previous study (Braverman et al., 1970) of athyreotic patients receiving L-T₄ therapy revealed normal or increased concentrations of serum T₃, because of the peripheral T₄ to T₃ conversion, it was well known that L-T₄ was a suitable agent in hormonal replacement therapy of patients with hypothyroidism (Stock et al., 1974; Braverman et al., 1973). In the present study, serum T₃ concentrations were elevated to the normal range after T₄ administration in hypothyroid patients. The results were consistent with those obtained by the previous study (Braverman et al., 1970). However, in the present study, it was noteworthy that 3 of 10 patients had still elevated TSH concentrations in serum, despite the administration of T₄ for approximately 3 months, although the doses were slightly less than the dosis (2.25 μg/kg body weight) recommended by the previous report (Stock et al., 1974). It has been suggested that adequate replacement therapy with L-T₄ would require doses sufficient to establish values for a serum T₄ concentration above the normal range (Sturnick and Lesses, 1961; Lavietes and Epstein, 1964). Moreover, the amount of T₃ generated by the conversion of T₄ to T₃ was found to contribute to approximately 70% of the daily T₃ production in normal subjects and, therefore, the 30% of the T₃ production was assumed to be secreted directly from the thyroid (Inada et al., 1975).

In the present paper, the elevated TSH levels found in 3 patients after T₄ administration were reduced to the normal range within 4 weeks after T₄ and T₃ administration. The present findings suggest that the administration of both T₄ and T₃ together might be more a suitable replacement therapy for patients with hypothyroidism than T₄ alone.

References

