Production of Anti-Human Thyroglobulin and Anti-Thyroid Hormone Antibodies in Rabbits Immunized with Human Thyroglobulin

SHIGEKI SAKATA, SHIGENORI NAKAMURA, TAKASHI KOMAKI AND KIYOSHI MIURA

The Third Department of Internal Medicine, Gifu University
School of Medicine, Gifu, 500

Abstract

Two rabbits (TG-1, TG-2) were immunized with human thyroglobulin (HTg) and bled serially. Antisera were obtained at different times after the first immunization and kept separately and studied. In both rabbits production of anti-HTg, and anti-thyroid hormone antibodies such as anti-thyroxine (T4) and anti-triiodothyronine (T3) antibodies was observed. Binding parameters of anti-HTg antibodies with HTg, T4, and T3 were calculated in two selected antisera (70-day and 249-day). The Scatchard’s plots of these antibodies were all curve-linear and were analyzed in two components: one, higher binding constant (Ka1) and smaller binding capacity (Cap1) and the other, lower binding constant (Ka2) and larger binding capacity (Cap2). Ka1 values of anti-HTg, anti-T4, and anti-T3 antibodies in sera from TG-1 obtained from 70-day and 249-day bleeding were $1.1 \times 10^{10} \text{M}^{-1}$, $6.0 \times 10^9 \text{M}^{-1}$, $7.9 \times 10^8 \text{M}^{-1}$ and $1.7 \times 10^{10} \text{M}^{-1}$, $6.5 \times 10^9 \text{M}^{-1}$, $1.0 \times 10^9 \text{M}^{-1}$, respectively. Those from TG-2 were $1.7 \times 10^{10} \text{M}^{-1}$, $1.8 \times 10^9 \text{M}^{-1}$, $6.4 \times 10^8 \text{M}^{-1}$ and $2.0 \times 10^{10} \text{M}^{-1}$, $3.1 \times 10^9 \text{M}^{-1}$, $1.6 \times 10^9 \text{M}^{-1}$, respectively.

The significance of the production of anti-HTg and anti-thyroid hormone antibodies in rabbits immunized with HTg in relation to the antigenic structure of HTg molecule was discussed.

Since Robbins et al. (1956) first reported the presence of anti-T4 antibodies in the sera of a patient with papillary carcinoma who had been treated with 131I, the presence of anti-thyroid hormone antibodies has been reported in various thyroidal and non-thyroidal disorders. These include Hashimoto's thyroiditis (Premachandra and Blumenthal, 1967; Ochi et al., 1972; Staeheli et al., 1975; Herrmann et al., 1977; Ikekubo et al., 1978; Ginsberg et al., 1978; Nakamura et al., 1982), hypothyroidism during desiccated thyroid hormone treatment (Staeheli et al., 1975), Graves' disease (Staeheli et al., 1975; Jørgensen et al., 1970; Inada et al., 1980; Moroz et al., 1983; Sakata et al., 1985) and Waldenström's macroglobulinemia (Trimarchi et al., 1982).

Thyroid hormones are haptens and are not immunogenic in free form. However, when conjugated with macromolecules such as albumin, they can initiate antibody formation. The presence of such macromolecules is essential for the production of anti-thyroid hormone antibodies. This aspect of the relationship between anti-HTg antibodies...
and anti-thyroid hormone antibodies has been discussed by many workers (Ochi et al., 1972; Herrmann et al., 1977; Hehrmann et al., 1977; Pudek and McIntosh, 1981), since HTg molecule contains considerable amounts of T4 and T3 (Izumi and Larsen, 1977).

Premachandra et al. (1963) first demonstrated the production of anti-thyroid hormone antibodies as well as lesions of autoimmune thyroiditis in guinea pigs immunized with bovine thyroglobulin. Later, Ochi et al. (1972) immunized 15 rabbits with HTg but the production of anti-thyroid hormone antibodies was observed in none of them. However, immunization with denatured HTg with either heat, acid or alkaline treatment raised anti-thyroid hormone antibodies in 12 out of 12 rabbits. Thus, controversy still exists concerning the production of anti-thyroid hormone antibodies in animals immunized with native thyroglobulin.

In order to clarify the mechanism(s) of the production of anti-thyroid hormone antibodies observed in thyroidal and non-thyroidal disorders, we have immunized two rabbits with HTg purified without steps which could induce denaturation of HTg (native HTg) and we examined the production of anti-HTg and anti-thyroid hormone antibodies in them.

Materials and Methods

1. Purification of HTg.

Purified HTg was a gift from Dr. Tarutani. It was purified according to the method reported by Ui and Tarutani (1961). Although we have not measured the content of iodothyronines, purified HTg contained 0.38% of iodine/HTg (w/w %). On this iodine concentration, content of T3 and T4 are roughly estimated 0.5 and 1.0 residue/mol of HTg, respectively (Tarutani et al., 1975).

2. Quantification of anti-HTg and anti-thyroid hormone antibodies.

Two outbred female rabbits (10 weeks after birth; TG-1, TG-2) were immunized with 0.5 mg of HTg emulsified with 1.0 ml of Freund’s complete adjuvant (FCA) according to the same immunization schedule. The immunizations were either intramuscular and subcutaneous (days 0, 70) or only subcutaneous (days 10, 19, 115, 190, and 210). The rabbits were bled at different times after the first immunization (from 26 days up to 249 days). Antisera in the serial bleeding from each rabbit were not mixed and were kept separately in the frozen state (−20°C). Selected antisera from both rabbits; 70-day and 249-day, were studied in the present work.

Quantification of anti-HTg antibodies was carried out by the solid phase radioimmunoassay (RIA) using 125I-protein A developed and evaluated in our laboratory (Sakata et al., 1983 a). Briefly, polystyrene tubes were coated with HTg, followed by the addition of diluted antisera. After washing with phosphate-buffered saline (PBS, pH 7.4), bound anti-HTg antibodies on the tubes were detected with 125I-protein A. Titers of anti-HTg antibodies were expressed as percentage of bound 125I-protein A.

Quantification of anti-T4 and anti-T3 antibodies in both rabbits was done as follows. Twenty-five microliters of antisera obtained by serial bleeding was incubated at 25°C for 16 hours with 25 µl of 125I-T4 (40 pg, 40,000 cpm) or T3 (40 pg, 32,000 cpm) and 950 µl of 0.06 M barbital buffer (pH 8.6) containing 8-anilino-1-naphthalene-sulfonic acid (ANS, Wako Chemicals, Osaka) at the concentration of 63 mM. After incubation, an equal amount of (1.0 ml) 25% polyethylene glycol (PEG, M.W.: 7,500, Wako Chemicals, Osaka) that had been dissolved in PBS was added. After centrifugation at 3,000 G for 20 min. at 25°C, the supernatant was aspirated and radioactivity of the precipitated γ-globulin was counted. Then bound radioactivity of 125I-T4 or 125I-T3 to immune sera was subtracted from that of preimmune sera and was divided by total radioactivity of the added 125I-T4 or 125I-T3. They are expressed as % bound.

3. Characterization of anti-HTg and anti-thyroid hormone antibodies.

Anti-HTg antisera from each rabbit obtained at 70-day and 249-day were diluted with PBS to 10−4, respectively. To 50 µl of diluted antisera,
50 µl of \(^{125}\text{I}-\text{HTg}\), cold \(\text{HTg}\) of different concentrations and 50 µl of 0.5 % normal rabbit serum were added and were incubated for 16 hours at 25°C, followed by the addition of 50 µl of goat anti-rabbit \(\gamma\)-globulin. This was followed by another incubation for 16 hours at 25°C. The mixture was then centrifuged at 3,000 G for 30 min. at 25°C. After aspiration of the supernatant, the radioactivity of the precipitate was counted and the association constant between \(\text{HTg}\) and anti-\(\text{HTg}\) antibodies was calculated.

The characterization of anti-T4 and anti-T3 antibodies was done as follows. Twenty-five microliters of rabbit anti-\(\text{HTg}\) antisera was incubated at 25°C for 16 hours either with \(^{125}\text{I}-\text{T4}\) (40 pg, 40,000 cpm) or \(^{125}\text{I}-\text{T3}\) (40 pg, 32,000 cpm) together with different concentrations of cold T4 or T3, and 800 µl of phosphate buffer (\(\mu=0.16\), pH 7.4) with ANS at a concentration of 63 mM. After incubation, the \(\gamma\)-globulin fraction was precipitated with 12.5 % PEG and the association constant (\(K_a\)) was calculated using Scatchard's plots.

\(^{125}\text{I}-\text{T4}\) and \(^{125}\text{I}-\text{T3}\) with specific activities of 1160 µCi/µg and 1250 µCi/µg, respectively, were obtained from New England Nuclear. Radioiodination of \(\text{HTg}\) and protein A (Sigma Chemicals) was performed according to the chloramine T method using \(^{125}\text{I}Na\) (Amersham, UK). Specific activities of \(^{125}\text{I}-\text{HTg}\) and \(^{125}\text{I}-\text{protein A}\) was 4–6 µCi/µg and 8–10 µCi/µg, respectively. T4 and T3 were purchased from Sigma Chemicals and were further purified with HPLC before use.

Results

1. **Time course studies of the production of anti-\(\text{HTg}\) and anti-thyroid hormone antibodies.**

As shown in Fig. 1, 2, and 3, titers of anti-\(\text{HTg}\), anti-T4, and anti-T3 antibodies increased with immunization in both rabbits.

2. **Physicochemical parameters of anti-\(\text{HTg}\) antibodies.**

In order to examine the physicochemical parameters of anti-\(\text{HTg}\) as well as anti-thyroid hormone antibodies, early antisera (70-day bleeding) and hyperimmune antisera (249-day bleeding) from both rabbits were selected for the investigation. Fig. 4 indicates the results. Using Scatchard's plots, anti-\(\text{HTg}\) antibodies were analyzed in two components: one, higher binding constant (\(K_a\, 1\)) and smaller binding capacity (\(\text{Cap}_1\)) and the other, lower binding constant (\(K_a\, 2\)) and larger binding capacity (\(\text{Cap}_2\)). As summarized in Table 1, \(K_a\, 1\) and \(\text{Cap}_1\) values for early antisera and hyperimmune antisera

![Fig. 1. Time course changes in the titers of anti-\(\text{HTg}\) antibodies in rabbits immunized with \(\text{HTg}\) (TG-1, TG-2). Each antiserum was diluted to \(10^{-3}\) with PBS and 50 µl of diluted antisera was added to the tubes which had been coated with \(\text{HTg}\). Detection of the anti-\(\text{HTg}\) antibodies was done with \(^{125}\text{I}-\text{protein A}\). Arrows indicate immunization schedule. (○) antisera from rabbit TG-1: (□) antisera from rabbit TG-2.](image-url)
of TG-1 are $1.1 \times 10^{10} \text{M}^{-1}$ and $4.8 \times 10^8 \text{M}^{-1}$, 1.7 $\times 10^{10} \text{M}^{-1}$ and 2.2 $\times 10^8 \text{M}^{-1}$, and those of TG-2 are $1.7 \times 10^{10} \text{M}^{-1}$ and $1.0 \times 10^9 \text{M}^{-1}$, 2.0 $\times 10^9 \text{M}^{-1}$ and 1.6 $\times 10^9 \text{M}^{-1}$, respectively.

3. Physicochemical parameters for anti-thyroid hormone antibodies.

Physicochemical parameters for anti-T4 and anti-T3 antibodies in rabbits immunized with HTg were also examined using early and hyperimmune antisera. Fig. 5 indicates a typical experiment on inhibition of the binding of 125I-T4 to anti-HTg antibodies by cold T4. In the right panel, Scatchard's plots of interactions between T4 and anti-HTg antibodies are shown. Anti-T4 antibodies were also analyzed in two components using Scatchard's equation. Values for $K_a 1$, $K_a 2$, $C_{ap} 1$, and $C_{ap} 2$ thus obtained from two rabbits are summarized in Table 1. $K_a 1$ and $K_a 2$ values for anti-T4 antibodies

![Fig. 2. Time course studies of anti-thyroid hormone antibody activities in sera obtained from rabbit TG-1. (△) anti-T4 activities: (○) anti-T3 activities.](image)

![Fig. 3. Time course studies of anti-thyroid hormone antibody activities in sera obtained from rabbit TG-2. (△) anti-T4 activities: (○) anti-T3 activities.](image)
varied between $1.8-6.5 \times 10^9 M^{-1}$ and $0.73-2.2 \times 10^8 M^{-1}$, respectively, which were approximately one-half to one-tenth lower than those for anti-HTg antibodies. Fig. 6 indicates a typical experiment on inhibition of the binding of 125I-T3 to anti-HTg antibodies by cold T3. In the right panel, Scatchard’s plots of interactions between T3 and anti-HTg antibodies are shown. Values for $K_a 1$, $K_a 2$, $C_{ap 1}$, and $C_{ap 2}$ thus obtained from the rabbits are summarized in Table 1. $K_a 1$ and $K_a 2$ values for anti-T3 varied between $0.79-1.6 \times 10^9 M^{-1}$ and $0.2-28 \times 10^7 M^{-1}$, respectively, which were without exception lower than those for respective anti-T4 antibodies. Thus the binding constants for anti-HTg antisera with HTg, T4, and T3 were strongest in HTg and lowest in T3. Binding capacities of anti-T4 and anti-T3 antibodies were approximately 10^2-10^3 magnitudes lower than those of respective anti-HTg antibodies. Another interesting result was that $K_a 1$ values for anti-HTg, anti-T4, and anti-T3 antibody activities in anti-HTg antisera from both rabbits increased with immunization.

Discussion

Circulating autoantibodies to thyroid hormone have been found in various thyroidal and non-thyroidal illnesses. This was first reported by Robbins et al. (1956) in a patient with papillary carcinoma of the thyroid treated with 131I. Later, Premachandra et al. (1967) demonstrated the presence of autoantibodies to thyroid hormone in patients with Hashimoto’s thyroiditis. Reports accumulated up to the present suggest that spontaneous occurrence of antibodies to T4 and/or T3 in humans may not be a rare phenomenon, especially in patients with Hashimoto’s thyroiditis. However, the question remains: what is an antigen(s) of anti-thyroid hormone antibodies?

Premachandra et al. (1963) first demonstrated the production anti-thyroid hormone antibodies as well as lesions of autoimmune thyroiditis in guinea pigs by immunization with bovine Tg-FCA mixture. Ochi et al. (1972), on the other hand, have shown that denatured HTg produced anti-thyroid hormone antibodies in rabbits but native HTg did not. Furthermore, titers of anti-thyroid hormone antibodies in the serum of his patient with Hashimoto’s thyroiditis decreased after absorption with HTg. Recently, Pearce et al. (1981) reported a case of hypothyroidism associated with anti-thyroid

![Fig. 4. Inhibition curve of the binding of 125I-HTg with anti-HTg antisera TG-1 (upper panel) and TG-2 (lower panel) by cold HTg. Early antisera (70-day bleeding: ⊗) and hyperimmune antisera (249-day bleeding: △) were diluted to 10^{-4} with PBS, followed by addition of 125I-HTg ($2.9 \times 10^{-12} M$, 44,000 cpm) and cold HTg of different concentrations. This was further followed by addition of goat anti-rabbit γ-globulin. After centrifugation radioactivity of the precipitated 125I-HTg with γ-globulin was counted.]
hormone antibodies and demonstrated that their antigen is in fact the HTg molecule itself.

We agree with the results of Premachandra et al. (1963). Although we have not examined the thyroid pathology of both rabbits, our present investigation shows that anti-thyroid hormone antibodies can be produced by immunization with native HTg molecule. Other possibilities, for example, as speculated by Hehrmann et al. (1977) that thyroid hormones are bound with serum proteins such as immunoglobulin in certain pathological conditions and exhibited antigenicity in some patients cannot be excluded, the results obtained from our experiments further strengthen the possibility that the antigen of anti-thyroid hormone antibodies in at least some patients could be the HTg molecule.

Table 1. Physicochemical parameters of anti-HTg, anti-T4, and anti-T3 antibodies in two rabbits immunized with HTg. Results obtained from early antisera (70-day breeding) and hyperimmune antisera (249-day bleeding) are shown.

<table>
<thead>
<tr>
<th></th>
<th>70-day bleeding</th>
<th>249-day bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HTg T4 T3</td>
<td>HTg T4 T3</td>
</tr>
<tr>
<td>Ka1 (M⁻¹)</td>
<td>1.1×10¹⁰ 6.0×10⁹ 7.9×10⁸</td>
<td>1.7×10¹⁰ 6.5×10⁹ 1.0×10⁹</td>
</tr>
<tr>
<td>Ka2 (M⁻¹)</td>
<td>4.8×10⁸ 1.1×10⁸ 2.2×10⁶</td>
<td>2.2×10⁹ 2.2×10⁸ 3.7×10⁷</td>
</tr>
<tr>
<td>Cap1 (mol/mℓ)</td>
<td>7.8×10⁻⁶ 8.4×10⁻⁸ 1.6×10⁻⁸</td>
<td>2.4×10⁻⁵ 1.6×10⁻⁸ 1.9×10⁻⁸</td>
</tr>
<tr>
<td>Cap2 (mol/mℓ)</td>
<td>27.0×10⁻⁶ 54.0×10⁻⁸ 17.9×10⁻⁸</td>
<td>14.0×10⁻⁵ 17.9×10⁻⁸ 15.6×10⁻⁸</td>
</tr>
</tbody>
</table>

Fig. 5. Characterization of anti-T4 antibodies in TG-2 (249-day bleeding). Left panel indicates the displacement of ¹²⁵I-T4 by cold T4. Right panel shows the Scatchard’s plots for the same experiment. Details of the experiments are given in the text.
The fact that the binding constant and binding capacities of anti-thyroid hormone antibodies were lower than those of anti-HTg antibodies, being one-half to one-tenth and 10^2 to 10^3 magnitudes, respectively, suggests that thyroid hormone in the HTg molecule does not possess high antigenicity. We have recently reported the presence of genetic control of the production of anti-thyroid hormone antibodies in mice immunized with native HTg (Sakata et al., 1983b). Thus, such lower antigenicity of thyroid hormone in HTg molecule together with the participation of immune response genes (Ig-genes) may explain why we cannot detect anti-thyroid hormone antibodies in all sera but can in some patient's sera in which anti-HTg antibodies are positive.

Acknowledgement

We wish to thank Dr. Tarutani for sending us purified HTg. We also wish to thank Ms. Keiko Hirata and Mr. Yuukoo Yamada for skillful technical assistance. This work was supported by a grant from the Ministry of Health and Welfare's "Disorders of adrenal hormone" Research Committee, Japan.

References

